
1. COMPUTATIONAL EFFICIENCY
One computational hurdle of our active learning algorithm
is to e�ciently calculate the closure set C(x,y) given a com-
plete G-oracle WH . In particular, among all the formula
in Theorem 1, we found the main bottleneck is to e�ciently
calculate O(x,y) whose worst time complexity is O(|H|3) (fol-
lowed by Prop. 1), while others can be done in O(|H|2).

Proposition 1. Following the notations in Theorem 1,
given S(a,b) [T(a,b), the worst time complexity to calculate
O(a,b) is O(|H|3).

Proof. If (c, d) 2 S(a,b), c 2 DG\H

b [{b}. then c 62
AG\H

a [{a}, thus DG\(H[N(a,b))
c = DG\H

c (by Definition of

N(a,b)). It holds that D
G\(H[N(a,b))
c [{c} ✓ DG\H

b [{b}.
Therefore, one has N 00

(c,d) ✓ N 00
(b,d) ✓ O(a,b) if (c, d) 2 S(a,b).

Likewise, N 00
(c,d) ✓ N 00

(c,a) ✓ O(a,b) if (c, d) 2 T(a,b). One has

O(a,b) =

2

4
[

(c,d)2S(a,b)

N 00
(b,d)

3

5 [

2

4
[

(c,d)2T(a,b)

N 00
(c,a)

3

5 ,

whose time complexity is O(|H|3).

Using the following Prop. 2, one can show that there exists
a pruning rule that cuts a major proportion of redundant
set operations in calculating O(a,b).

Proposition 2. Following the notations in Theorem 1,
we have N 00

(c0,d0) ✓ N 00
(c,d) if (c0, d0) 2 N 00

(c,d).

Proof. Let (c0, d0) 2 N 00
(c,d). If d0 6= d, (d0, d) 2 G \

(H [N(a,b)). Then, A
G\(H[N(a,b))

d0 ✓ A
G\(H[N(a,b))

d
(AAA).

Thus,

A
G\(H[N(a,b))

d0 [{d0} ✓ A
G\(H[N(a,b))

d
[{d}.

Likewise,

D
G\(H[N(a,b))

c0 [{c0} 2 D
G\(H[N(a,b))
c [{c}.

By the definition of N 00
(c0,d0) and N 00

(c,d), one has N 00
(c0,d0) ✓

N 00
(c,d).

We also conduct empirical studies to examine the growth
rate of calculating C(x,y). In practice, we find the empirical
growth rate is closer to linear rate, which means the worst
time complexity bound presented here is very conservative.

2. BOUNDS ON THE NUMBER OF QUERIES
Note that any strict order G can be described as a directed
acyclic graph (DAG). We show the lower and upper bounds
on the number of queries that are needed to learn a consis-
tent classifier for G.

Theorem 2. Given a strict order G of V, let A be a con-
sistent learner that makes m queries to the oracle before ter-
mination, then

|G| m |G| (1)

where G is the transitive reduction [1] of G and G is the
closure (Def. 4) of G.

The above lower and upper bounds are tight in the sense
that there exist DAGs G1 and G2, such that |G1| = |G1|
and |G2| = |G2|. With the power of the active learning
paradigm, we want to empirically show that the number of
queries needed is much smaller.

3. EFFICIENCY STUDY
The proposed reasoning module is designed to be plugged
into any algorithm that needs reasoning of strict orders.
Thus besides verifying e↵ectiveness, it is also important to
investigate its e�ciency. We conduct empirical studies on
the runtime of the reasoning module.

Figure 2 shows the relation between the average runtime
for calculating the new closure using Theorem 1 and the
size of the current labeled closure |H|. Results for both
LBC-R+ and QBC-R+ are presented. We can see that as
|H| keeps increasing during the pool-based active learning
process, the average runtime of calculating C(x,y) increases
almost linearly and even decreases a little at the end. Al-
though the worst case time complexity for calculating The-
orem 1 is O(|H|3) (for O(a,b)) and O(|H|2) (for others), the
runtime required is directly related to the number of ascen-
dants and descendants of elements in V , which is usually
di↵erent for the four strict order datasets used. If the few
ascendants and descendants e↵ectively control the size of
calculations as we have observed, the runtime will be short
regardless of a large |H|. This might explain why the growth
of calculating C(x,y) is near linear. We also empirically eval-
uate the e↵ects of using Prop. 2 on the e�ciency and include
the results in the supplemental material.

(a) Data Mining (b) Geometry

(c) Physics (d) Precalculus

Figure 2: The average runtime for calculating the
new closure using Theorem 1 v.s. the size of current
labeled closure |H|.

3.1 Effectiveness of Proposition 2
We also empirically evaluate the e↵ects of using Proposi-
tion 2 on the e�ciency. Specifically, we measure the total

runtime of O(a,b) calculation in Theorem 1 for a full round
of active learning (until Du = ;) with and without apply-
ing the pruning rule induced by Proposition 2. The results
are shown in Table 1 where the numbers are the average
runtime over all 300 di↵erent rounds of active learning for
each dataset. We can see that the pruning can lead to a
speedup of 40-55% in the LC-R+ experiments and a speedup
of 49-55% in the QBC-R+ experiments, which shows that
Proposition 2 is helpful for higher e�ciency.

Domain LC-R+ QBC-R+
w/o pruning w/ pruning w/o pruning w/ pruning

Data mining 5.5 3.3 (-40%) 5.5 2.6 (-53%)
Geometry 85.5 39.2 (-54%) 69.6 31.4 (-55%)
Physics 111.0 58.8 (-47%) 117.1 60.2 (-49%)
Precalculus 134.3 59.9 (-55%) 167.4 74.8 (-55%)

Table 1: The e↵ect of Proposition 2 on the total
runtime (s) of O(a,b) calculation in Theorem 1 for a
full round of active learning (until Du = ;).

4. PROOFS
Proposition 3. For any H ✓ V ⇥ V , the closure of H

subject to a strict order G is unique.

Proof. For any two supersets H1 6= H2 of H whose or-
acles WH1 ,WH2 are complete, WH1\H2 , on a smaller set
H1 \H2, is also complete (by definition).

Proposition 4. Let G be a strict order of V . For a
complete G-oracle WH , H \G is also a strict order of V .

Proof. For any (a, b), (b, c) 2 H \ G, because WH is
complete, (a, c) 2 H \ G (by Definition 4 (i)). For any
(a, b) 2 H \ G, (b, c) 2 H \ Gc ✓ (H \ G)c (by Defini-
tion 4 (iv)). Therefore, H \G is also a strict order of V (by
Definition 1).

4.1 Proof of Theorem 1
4.1.1 Well-definiteness
It is trivial that if WH is complete, G \ (H [N(x,y)) is also
a strict order. Therefore, N 00

(c,d) is well defined, so is O(x,y).

4.1.2 Necessity
One can easily verify that if (x, y) 2 G \Hc, both N(x,y) ✓
H 0 (Definition 3 (i)), R(x,y) ✓ H 0 (Definition 3 (iv)), and

S(x,y) [T(x,y) [O(x,y) ✓ H 0 (Definition 3 (ii),(iii)) from the
definition of closure, and likewise if (x, y) 62 G, N 0

(x,y) ✓
H 0 (Definition 3 (ii), (iii)). In another word, C(x,y)(H) ✓
H 0. Also, see Fig. 1 for the explanation of each necessary
condition mentioned.

4.1.3 Sufficiency
One can see AG

a0 ✓ AG

a if a0 2 AG

a and DG

a0 ✓ DG

a if a0 2 DG

a .
That is, an ancestor of ancestor is also an ancestor (briefly,
AAA), and a descendant of descendant is also a descendant
(briefly, DDD).

Now we proceed to prove C(x,y) is complete using contradic-

tion which finalizes the proof of our result C(x,y) = H 0. If

C(x,y) is not complete, by definition, one of the four condi-
tions in Definition 3 must fail.

If Definition 3 (i) fails, there must exist a, b, c such that
(a, b) 2 C(x,y) \ G, (b, c) 2 C(x,y) \ G, while (a, c) 62 C(x,y).
In this case, if both (a, b) and (b, c) are from H, because H is
complete, (a, c) 2 H \G contradicts the assumption. Hence
at least one of (a, b) and (b, c) is not included in H. By the
definition of C(x,y), if one pair belongs to G \ Hc, it must
come from N(x,y). Therefore, it implies (x, y) 2 G \Hc.

Cases 1: If (a, b) 2 N(x,y) and (b, c) 2 N(x,y), (y, b) 2 G and

(b, x) 2 G. That however implies (y, x) 2 G, contradicting
G’s definition as a strict order (See Definition 1 (ii)).

Cases 2: If (a, b) 2 N(x,y) and (b, c) 2 H, a 2 AG\H

x and c 2
DG\H

y (by DDD). It implies (a, c) 2 N(x,y) ✓ C(x,y).

Cases 3: If (a, b) 2 H and (b, c) 2 N(x,y), a 2 AG\H

x (by AAA)

and c 2 DG\H

y . It implies (a, c) 2 N(x,y) ✓ C(x,y).

In summary, Definition 3 (i) holds for C(x,y).

If Definition 3 (ii) fails, there must exist a, b, c such that
(a, b) 2 C(x,y) \ G = G \ (H [N(x,y)), (a, c) 2 C(x,y) \ Gc,
while (b, c) 62 C(x,y). In this case, if both (a, b) and (a, c) are
from H, because H is complete, (b, c) 2 H \Gc contradicts
the assumption. Hence at least one of (a, b) and (a, c) is not
included in H. We divide the statement into the following
cases to discuss:

Cases 1: If (x, y) 2 G, (a, b) 2 N(x,y), and (a, c) 2 H \Gc,

(a, x) 2 G \H and (y, b) 2 G \H. Because (a, x) 2 H \G,
and (a, c) 2 H\Gc, (x, c) 2 H\Gc. Because {(x, y), (y, b)} ✓
G \ (H [N(x,y)), (x, b) 2 G \ (H [N(x,y)). Therefore,
(b, c) 2 N 00

(x,c) ✓ C(x,y).

Cases 2: If (x, y) 2 G and (a, c) 2 R(x,y), (c, a) 2 N(x,y), thus

(c, b) 2 N(x,y). It implies (b, c) 2 R(x,y) ✓ C(x,y).

Cases 3: If (x, y) 2 G and (a, c) 2 S(x,y), (y, a) 2 G\H and

9(d, c) 2 Gc \ H such that (d, x) 2 G \ H. Thus, (x, c) 2
Gc \H) (y, c) 2 S(x,y)) (b, c) 2 N 00

(y,c) ✓ C(x,y).

Cases 4: If (x, y) 2 G and (a, c) 2 T(x,y), (c, x) 2 G\H and

9(a, d) 2 Gc \ H such that (y, d) 2 G \ H. Thus, (a, y) 2
Gc \H) (a, x) 2 T(x,y)) (a, b) 62 N(x,y). Because (a, b) 2
G\ (H [N(x,y)), one has (a, b) 2 G\H) (b, x) 2 T(x,y))
(b, c) 2 N 00

(b,x) ✓ C(x,y).

Cases 5: If (x, y) 2 G and (a, c) 2 O(x,y), there exists (d, e) 2
S(a,b)[T(a,b) such that (a, c) 2 N 00

(d,e). Therefore, {(a, b), (d, a),
(c, e)} ✓ G \ (H [N(x,y)). Hence, (b, c) 2 N 00

(d,e) ✓ C(x,y).

Cases 6: If (x, y) 2 Gc, we have (a, b) 2 G \H and (a, c) 2
N 0

(x,y). Thus (x, b) 2 G \H) (b, c) 2 N 0
(x,y) ✓ C(x,y).

In summary, all six cases above contradict the assumption
(b, c) 62 C(x,y). Thus Definition 3 (ii) holds for C(x,y). Given
we have verified the condition of Definition 3 (ii), one can
also prove that Definition 3 (iii) holds in a similar way, be-

cause their statements as well as definitions of S(x,y) and
T(x,y) are symmetric.

One can easily see that Definition 3 (iv) holds for C(x,y),
because G \ (H [N(x,y)) is also a strict order and R(x,y) ✓
C(x,y). ⇤

4.2 Proof of Theorem 2
We first introduce the notion of transitive reduction before
we proceed:

Definition 6 (Transitive Reduction [1]). Let G be
a directed acyclic graph. We say G is a transitive reduction
of G if:

(i) There is a directed path from vertex u to vertex v in G
i↵ there is a directed path from u to v in G, and

(ii) There is no graph with fewer arcs than G satisfying
(i).

For directed acyclic graph G, Aho et al. [1] have shown that
the transitive reduction is unique and is a subgraph ofG. Let
G be a simple directed acyclic graph (DAG). In compliance
with Def. 4, we use G to denote the transitive closure of G.
Define S(G) as the set of graphs such that every graph in
S(G) has the same transitive closure as G, i.e.,

S(G) := {G0 | G0 = G}

Aho et al. [1] have shown that S(G) is closed under inter-
section and union. Further more, for DAG G, the following
relationship holds:

G =
\

G02S(G)

G0 ✓ G ✓
[

G02S(G)

G0 = G

Next, we give the proof of Theorem 2 below.

Proof. With the fact that negative labels from the query
oracle cannot help to induce positive labels in the graph,
we can bound the number of queries, m, needed to learn a
classifier:

m � |G|
The proof is by simple contradiction based on the definition
of the transitive reduction of G and the fact that A is a
consistent learner. On the other hand, there is a learning
algorithm A that simply remembers all the queries with pos-
itive labels and predict all the other inputs as negative. For
this algorithm A, it su�ces for A to make |G| queries.

5. EXPERIMENT ENVIRONMENT
All experiments are conducted on an Ubuntu 14.04 server
with 256GB RAM and 32 Intel Xeon E5-2630 v3 @ 2.40GHz
processors. Active learning query strategies are implemented
in Python2.7. Code and data will be publicly available.

6. REFERENCES
[1] A. V. Aho, M. R. Garey, and J. D. Ullman. The

transitive reduction of a directed graph. SIAM Journal
on Computing, 1(2):131–137, 1972.

