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ABSTRACT
We explore a new metadata extraction framework without human
annotators with the ground truth harvested from Web. A new train-
ing sample is selected based on not only the uncertainty and rep-
resentativeness in the unlabeled pool, but also on its availability
and credibility in Web knowledge bases. We construct a dataset of
4329 books with valid metadata and evaluate our approach using 5
Web book databases as oracles. Empirical results demonstrate its
effectiveness and efficiency.

1. INTRODUCTION
In most machine learning settings, unlabeled data is usually cheap

and copious, while manually harvesting high quality labels can be
costly. Instead of simply labeling all the data or a randomly sam-
pled subset, active learning attempts to select unlabeled data for
labeling in a smarter way in order to gain better learning accuracy
with lower cost [5]. A key assumption of active learning is that
there is a single omniscient oracle that can always correctly tell the
ground truth with zero or constant cost. However, this does not
hold in real world situations since expert labelers are scarce and
expensive and human annotators unavoidably produce errors, of-
ten to the distraction of quality in their labeling. To address these
issues, recent research has shifted to investigate more practical ac-
tive learning scenarios based on multiple non-expert labelers and
Internet-based crowd-sourcing [3, 4, 10]. With this paradigm, there
is no omniscient oracle; instead, multiple imperfect labelers with
varying expertise usually produce uneven, inconsistent, subjective
and unreliable labels.

Dependence on human labelers can still limit the feasibility of
active learning in real world applications. Crowd-sourcing labelers
are cheap non-experts but they often produce noisy labels. More-
over, human labelers in crowd-sourcing environments are not al-
ways online or available “on demand”. Given a search engine that
indexes metadata for scientific papers and books in various domain-
s, its crawler can crawl hundreds of thousands new documents to
be ingested. The active learner may select less than 100 new docu-
ments to be labeled. Even though, with crowd-sourcing tools such
as Amazon’s Mechanical Turk, there is no efficient way to guaran-
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tee that the labeling task will be finished within a fixed time due to
the uncertainty of human performance.

We observe that the Web per se provides abundant knowledge
bases that can be helpful for obtaining labels for machine learning
tasks. For example, given an ISBN of a book, Google book, A-
mazon book, AbeBooks, etc. can provide metadata information for
the book. We thus can consider each knowledge base as an oracle
that can provide labeling information. Compared with the active
learning in traditional human labeler settings, the web knowledge
based approach differs in the following ways.

Communication with oracles: 1) the active learner needs to make
well designed queries to get meaningful feedback from the oracles;
2) the active learner might need to do further extraction and infer-
ence based on the feedback; 3) batch-mode is enabled where mul-
tiple queries can be conducted in a parallel, distributed style since
the communication/interaction between active learner and oracles
is much more convenient and efficient.

Query strategy: 1) the oracles can provide helpful information
for selecting new training instances (for example, an instance with
more reliable feedback should be favored), so new training instances
selection strategy should be based on not only the informativeness
or representativeness in the local unlabeled pool, perhaps, but also
the availability and credibility in the oracles; 2) the oracles, always
staying online and available “on demand”, perform consistently
over time, making it easier to model their quality or credibility in
the first place.

Cost model and stop criteria: 1) labeling costs are nearly con-
stant across different instances, mainly consisting of query submis-
sion and processing, ground truth extraction and inference, which
could be accurately measured by time; 2) stop criteria might be ap-
plication dependent, but the capacity limit of an oracle may force a
stopping (for example, Google book allows only a limited number
of queries per day per user/IP).

All the above could create a new system with more potential for
real world applications due to easy-to-control oracles and cheaper
annotation cost. The key consequential questions include: how to
select new training instances based on both local and web knowl-
edge? And how to effectively harvest the ground truth from the
feedback of the oracles? The first one is the essential query strate-
gy problem in active learning while the second could be regarded
similarly as a truth discovery problem [11, 7].

This work has three main contributions: first, we present a novel
metadata extraction framework using Web knowledge bases as the
oracles. Besides, we propose a hybrid pool-based query strategy
based on not only the informativeness and representativeness of
unlabeled instances in the local pool, but also the availability and
credibility in the Web knowledge bases. Finally, we apply this new
framework to a real world application book metadata extraction.
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Figure 1: Web knowledge based active learning cycle

2. METHODS
The overall cycle is shown in Figure 1. The active learner incre-

mentally selects new instances to train a more accurate model with
a minimal labeling cost until reaching the stop criterion. There are
three main disparities from traditional active learning. First, the o-
racles are not human annotators but web knowledge bases, making
the query more efficient. Second, query selection is based on both
local and web knowledge (indicated by a double arrow). Third, the
truth discovery process is added to find the confident true labels.

2.1 Query Strategy
A commonly used query strategy is uncertainty sampling, which

queries the instance whose prediction is the least confident on the
trained model, or with a class posterior closest to 0.5 [6]. Since
we consider the batch-mode which allows the learner to query in-
stance in groups, a naive strategy would be greedily selecting the
top K instances based on uncertainty sampling. However, this s-
trategy fails to consider the “overlap” among those top instances.
To incorporate diversity and density measures to encode the “rep-
resentativeness” of the selected instances on the whole data, we
propose a new batch-mode active learning strategy derived from
information density [8].

Φ(x) = ϕi(x)
(
λϕde(x) + (1− λ)ϕdi(x)

)β
ϕa(x)ϕr(x) (1)

where ϕi(x) measures the “base” informativeness to which the
uncertainty-based or other metrics in the literature of active learn-
ing can be applied; ϕde(x) measures an instance’s average similar-
ity (density) to the unlabeled pool U , as shown in Eq. (2); ϕdi(x)
measures an instance’s average dissimilarity (diversity) to the cur-
rent batch Q, as shown in Eq. (3); λ is a parameter controlling
the tradeoff between density and diversity and the weighted sum
reflects the representativeness of an instance; β controls the rela-
tive importance of representativeness; ϕa(x) is a boolean function
indicating the availability of an instance on all the oracles; ϕr(x)
measures the reliability of the ground truth.

ϕde(x) =
1

|U |
∑

xu∈U

sim(x, xu) (2)

ϕdi(x) =
1

|Q|
∑
xq∈Q

diff(x, xq) (3)

2.1.1 Informativeness
The informativeness is encoded into our query selection strategy

by ϕi(x) based on uncertainty sampling. For a multi-class classifi-
cation or sequence labeling problem, we use the least confident:

ϕi(x) = 1− P (y∗|x; θ) (4)

where y∗ is the class label with the highest posterior probability
under the model θ, or the most likely label sequence (the Viterbi
parse). This metric can also be interpreted as the expected 0/1-
loss, i.e., the model’s belief that it will mislabel an instance [2]. In
our experiments on book metadata extraction, we can directly com-
pute this metric if treating it as sequence labeling problem using se-
quence models such as CRF. If we treat it as multi-class classifica-
tion problem using SVM, then we compute P (y∗|x; θ) as the prob-
ability product of all predictions in an instance, i.e. ΠiP (y∗

i |xi; θ),
where y∗

i is the most likely label of the token xi (a line/block in the
title page of a book) in the instance x (a book).

2.1.2 Representativeness
The uncertainty-based strategies are prone to outliers, or the least

certain instances on the classification boundary, but fail to consider
those that are representative of the underlying distribution. To this
end, the representativeness is encoded via two facets: the density in
the unlabeled pool and the diversity in the current batch. The sim
and diff computes the similarity and difference between instances
respectively. If the similarity function ranges between zero to one,
we can simply define diff = 1− sim. We choose cosine similarity
since imperial comparisons have shown it is the clear winner in
sequence labeling and text classification corpora [8].

2.1.3 Availability and Reliability
It is hard to tell if a human labeler is capable of labeling an in-

stance or not unless such an option is provided and the labeler is
unbiased and conscientious. However, in the knowledge bases en-
vironment, this can be easily found out based on the feedback. For
example, the knowledge bases will return a empty or “not found”
message. The availability is an indicator to show whether an in-
stance the active learner want to query is accessible in the oracles.

ϕa(x) =

{
0 if no legal feedback or ϕr(x) < δ
1 otherwise (5)

Suppose Y (x) denotes the set of returned answers and f(y) de-
notes the confidence of each answer y ∈ Y , then a simple strategy
is to choose the answer with the largest confidence, or ϕr(x) =
max{f(y) : y ∈ Y (x)}. However, this could be problematic
if there are multiple maximums. Hence we define it as ϕr(x) =
f(y∗

1)− f(y∗
2) where y∗

1 and y∗
2 are the first and second most con-

fident answers in Y (x), respectively. If multiple maximums exists,
ϕr(x) will be zero thus no answer will be selected as the ground
truth. Otherwise, if f(y∗

1)− f(y∗
2) ≥ δ, y∗

1 will be selected as the
final ground truth for x with reliability ϕr(x). A simple case is that
there is only one candidate answer y in Y . Then y will be directly
selected as the truth with reliability f(y).

2.2 Ground Truth Discovery
Obtaining the ground truth from all the feedback returned by the

oracles can be regarded as a truth discovery or fact finding prob-
lem, i.e. to find out the true facts from a large amount of conflicting
claims provided by multiple sources. But the key difference here is
that knowledge bases provide much more independent and reliable
information than does general sources, with less conflicting claim-
s among them. For example, by manually checking 100 books’
metadata returned by Google book, Amazon book, AbeBooks, IS-
BN Search, and BookFinder4U, we find more than 90% of them
agree with each other on title and authors and 100% agree on ISB-
Ns. And the disagreement is usually due to abbreviation difference
(e.g. Michael Jordan, M. Jordan, Jordan M.), or omit of the last
authors. Based on this observation, it is reasonable to assume that
the answers from two different oracles are independent with each



Table 1: Features for Book Metadata Extraction
Feature Description Type

font size
Initial Font: the font size of the starting character float
Average Font: the average font size of all the characters float
Font Changes: number of changes in font size int

location

Start X, End X, Start Y, End Y: the coordinates of the
line block in the page float

Line Number: the (order) number of the line within the
page, e.g. 2 indicates the second line int

Page Number: the (order) number of the page int

text Bag-of-word: Top 200 words selected by DF rank in the
whole dataset; 1 indicates a word is in the line boolean

others #Words: total number of words in the line int
#Digits: total number of digital words in the line int

other. Suppose there are M oracles O = {oi} and each has a cred-
ibility c(oi), or the probability that oi will tell the truth. Moreover,
we assume c(oi) has a uniform distribution on all answers oi pro-
vides. For an answer y returned by a subset S ⊆ O, the confidence
of y can be calculated by

f(y) = 1−Πo∈S

(
1− c(o)

)
(6)

The credibility c(o) can be initialized based on prior knowledge
and then updated based on the oracle’s performance each learning
cycle.

ct(o) = ct−1(o) + ε

∑
x∈Q µ(yx)f(yx)

|Q| (7)

where yx is the answer returned by oracle o for query x and µ(yx)
indicates whether yx is selected as the true answer, i.e.

µ(yx) =

{
1 if yx = argmaxy∈Y (x)f(y)

−1 otherwise
(8)

2.3 Considering Real Cost
If assuming the labeling cost of an instance is a constant, then

the cost can be simply measured using number of labeled instances.
But this assumption can hardly hold in human annotation environ-
ment. First, labeling tasks could be arbitrarily complex, making
the required time varies substantially. Second, the quality of an-
notators in terms of expertise and responsibility, might also varies
considerably, making the actual annotation costs differ from one
to another. This motivates the cost-sensitive active learning which
tries to minimize the overall cost rather than the number of labeled
instances [9, 3]. However, in the web knowledge based active learn-
ing, although different oracles may have different response time for
a query, labeling costs are nearly constant across different queries
for a single oracle. The cost of a query is define as:

cost(x) =
∑
o∈S

tq(x, o) + ttd(x) (9)

where S is a subset of all oracles, tq(x, o) is the time for querying
x on oracle o, and ttd(x) is the time for harvesting ground truth.
Luckily, both tq(x, o) and ttd(x) can be well estimated using the
average by issuing a few queries beforehand. If the query strategy
is to adaptively select different oracles for a learning cycle or a
particular instance, then the cost will vary due to the difference of
S. We can now use the benefit-cost ratio (BCR), or

ΦBCR(x) = Φx/cost(x) (10)

In practice, if we do not use a large number of oracles, we can
simply query all oracles every time or set S = O and then the cost
will be a constant.

3. EXPERIMENTS
The initial book dataset contains 237,429 pdf documents collect-

ed from Citeseerx repository, identified using simple rules “has an
ISBN in the first 4 pages” and “number of pages>=100”. We then
put all the extracted ISBNs to query metadata from Google book
(which dominates all book oracles in quality and scale). Those
queries together give us 4329 books with valid metadata (title and
authors). The first four pages of these books are then extracted line
by line and represented by computational features shown by Ta-
ble 1. The lines with text content matched to the title and authors
are labeled by ‘1’ and ‘2’ respectively; others are labeled by ‘0’.
By ruling out those not being successfully extracted or perfectly
matched, we finally have 2496 books with ground truth.

We use Libsvm[1] to train a 3-class model using the default pa-
rameters. The oracles we use include Abebooks, Amazon book,
ISBNSearch, and BookFinder4U (Table 2). We rule out Google
book as it has been used to generate the ground truth. The confi-
dence score of each oracle is defined as the groundtruthed rate of its
response, or the ratio of number of books with ground truth to the
number of books with valid feedback. All experiments were con-
ducted on a machine with 2.35GHz Intel(R) Xeon(R) 4 processors,
23GB of RAM,and Red Hat Enterprise Linux Server(5.7) installed.

3.1 Evaluation Results
The first question we need to answer is “can the selected oracles

give valid labeling?” We queried all the ISBNs of the 2496 books
from the four websites, and found that there is only one book that
cannot get valid ground truth (ISBN = 9292230522). The num-
ber of recalled books and the groundtruthed books (books with true
ground truth) from each oracle are shown in Table 2, and the u-
nification of all the groundtruthed books covers 2495 books. This
guarantees that at least one oracle will give the correct answer for
any query from the 2495 books. In the beginning of the learning,
we set the credibility of all the oracles (c(o))equally to be 0.95.
Hence, according to Equation (6), books with valid feedback from
more oracles will have a larger confidence. The final confidence of
each oracle is shown in the last column of Table 2.

Now we check if the active learner is comparable to that trained
by a true oracle (based on our ground truth). We show the learning
curves of the web oracles based active learner (WAL) compared
with those of the true oracle (TAL) in Figure 2a. WAL considers
all informativeness, representativeness, availability and reliability
for query selection. The batch (Q) size is set to be 20. λ = 0.5
and β = 1. TAL(I) denotes the traditional active learning using
informativeness, where the most 20 uncertain instances are added
to previous training set to train a new active learner. TAL(I+R)
denotes the one using both informativeness and representativeness.
It is important to note that here a training instance is not a book
but an extracted “line” or visual block within it. A page could have
more than 30 lines, but with few ‘1’ and ‘2’ lines. To make it
a balance classification task, we remove the lines whose previous
and next line are both ‘0’. This will make a book with near equal
number of ‘0’, ‘1’, and ‘2’ lines and the total number of lines range
from 2 to 20 (the total number of lines for all the 2496 books are
3473). So, the informativeness and representativeness of a book
are actually the average among all the lines. Random denotes the
one using random selection strategy. For each method, the first
20 books are randomly selected; the learning curve is the average
results of 10 runnings. We use a separate test set containing 1000
books. The accuracy is the average results of all the tested lines.
WAL shows a very close learning curve to TAL(I) and TAL(I+R)
and significantly outperforms the Random method. The book-level
accuracy (a book is correctly labeled if all its lines are correctly



Table 2: Oracles for Book Metadata Extraction
Name #Recalled books #Groundtruthed books Query method Query time (s) Confidence

Google book - - https://www.googleapis.com/books/v1/volumes?q=isbn:ISBN 0.23 100%
Abebooks 814 777 www.abebooks.com/servlet/SearchResults?isbn=ISBN 0.77 95.5%

Amazon book 1275 1219 www.amazon.com/gp/search/ref=sr_adv_b/?field-isbn=ISBN 0.82 95.6%
ISBNSearch 1170 1118 http://www.isbnsearch.org/isbn/ISBN 1.9 95.6%

BookFinder4U 1301 1237 www.bookfinder4u.com/IsbnSearch.aspx?mode=direct&isbn=ISBN 2.8 95.1%
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Figure 2: Learning and cost curves comparisons

labeled) decreases around 30% for all the methods but the trends of
the learning curve remain.

We also compared the performance of different query selection
strategies within our framework, showing in Figure 2b. WAL(*)
uses the whole query strategy while WAL(I) uses only informative-
ness and WAL(I+R) uses informativeness together with represen-
tativeness. We can see that WAL(*) outperforms all the other three
methods due to its more solid active query selection.

3.2 Run-time and Scalability
The most important advantage of the WAL over TAL is its ef-

ficiency and easy-to-control. The average query time for a book
is only 5 seconds (parallel queries will reduce to 3s), which cannot
be achieved by human labelers. The truth discovery time ttd(x) in-
clude the time for extracting the metadata from the resulting content
(typically using regular expression) and computing f(y) in Eq.(6),
costing only 0.6s in average. The feature extraction and computa-
tion costs 13s. The training and testing time using Libsvm ranges
from 1 to 38 seconds, positively related to the size of training set
(ranging from 20 to 620).

We plot the corresponding cost curve of the learning curves of
WAL and TAL, shown in Figure 2c. The cost in terms of time
represents all the whole time cost in each learning cycle. Other
variations of them are not shown since they are every close to them
respectively. Since we do not really have human labelers for test-
ing, in both TAL and Random, we assume the labeling time is pro-
portional to the number of lines of all queried books (5 lines per
second), without any delay, which in practice it is hard to achieve
by multiple human labelers. The results clearly indicate that our
approach is much more efficient and stable in time cost.

4. CONCLUSION AND FUTURE WORK
The inherent uncertainty and noise in human annotation makes

crowd based active learning not a practical choice for large scale
learning tasks. The recent emerging of high quality and large web
knowledge bases provide an alternative approach using oracles for
some learning tasks such as information extraction or entity recog-
nition. We proposed this new direction for efficient large scale ma-
chine learning whose ground truth can be reliably obtained from
web knowledge bases, without any human labeling involved. Our

experiments demonstrate its potential for some real world applica-
tions where their required “labels” can be harvested from Web. In
the future, we will apply the technique to larger datasets of academ-
ic books and papers and other applications.
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