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ABSTRACT
We present a framework for constructing a specific type of
knowledge graph, a concept map from textbooks. Using
Wikipedia, we derive prerequisite relations among these con-
cepts. A traditional approach for concept map extraction
consists of two sub-problems: key concept extraction and
concept relationship identification. Previous work for the
most part had considered these two sub-problems indepen-
dently. We propose a framework that jointly optimizes these
sub-problems and investigates methods that identify concept
relationships. Experiments on concept maps that are manu-
ally extracted in six educational areas (computer networks,
macroeconomics, precalculus, databases, physics, and geom-
etry) show that our model outperforms supervised learning
baselines that solve the two sub-problems separately. More-
over, we observe that incorporating textbook information
helps with concept map extraction.

Categories and Subject Descriptors
I.2.6 [Learning]: Knowledge acquisition; Concept learning;
I.7.5 [Document management and Text Processing]:
Document Capture—Document Analysis; H.3.3 [Information
Storage And Retrieval]: Information Search and Re-
trieval

Keywords
Open education; concept maps; textbooks; Web knowledge;

1. INTRODUCTION
A knowledge graph organizes knowledge by linking enti-

ties with their relationships and is applicable to many NLP
tasks such as question answering [43] and knowledge acqui-
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sition [10]. While recent work has addressed reasoning in
knowledge graphs (DBpedia [1] and YAGO [33]), and for
real world facts [26], there has been little effort in orga-
nizing knowledge for educational purposes. Applications of
such knowledge structures in education have been widely
used in teaching and learning assessment [17].

There are many interesting challenges in extracting knowl-
edge graphs for education. In some cases, nodes in an edu-
cational knowledge graph can be scientific and mathemati-
cal concepts, such as “Lasso” and “Regularization”, instead
of typical entities such as individuals, locations, or organiza-
tions. As such, instead of using general concept relationships
such as “is-a” and “part-of”, we focus on the prerequisite de-
pendencies among concepts. A prerequisite dependency re-
quires that learning one concept is necessary before learning
the next. For instance, we need to have basic knowledge of
“Regularization” in order to learn “Lasso” (or L1-regularized
regression).

We present a method for constructing a specific type of
knowledge graph, a concept map, which is widely used
in the learning sciences [41]. In such a directed graph,
each node is a scientific concept and directed links between
these nodes imply their prerequisite dependencies. Figure 1
shows an example of an extracted concept map in the eco-
nomics area where each node is an economical concept such
as “Gross domestic product” and “Consumer price index”
and links indicate prerequisite dependencies relating these
concepts (from prerequisites to subsequents).

Traditional approaches to knowledge graph extraction
generally consist of two separate steps: 1) Extracting key
concepts and, 2) Identifying relationships between key con-
cepts. While these two common information extraction tasks
have been well studied [7, 33, 2], solving these two tasks in-
dependently for educational content poses problems. We
argue that these two problems are actually strongly cou-
pled, meaning that the results of one affects the results of
the other. Thus, solving these sub-problems independently
might lead to sub-optimal performance. For example, in
educational resources, a concept is often presented by first
introducing its prerequisites. Thus the order in which two
concepts appear in a document source can help identify their
prerequisite relation. If a concept in this ordered chain is
not correctly extracted, its prerequisite relation to other
concepts will be lost. Furthermore, if this concept is the



Gross Domes�c 
Product

Government 
Spending

Investment

Consump�on

Export

Consumer Price 
Index

Unemployment  Rate

Price Level

Unemployment

Figure 1: Example of an extracted concept map in eco-
nomics.

prerequisite to many others, we may no longer identify an
important key concept.

Leveraging information from existing educational resources,
we propose a concept map extraction model that jointly op-
timizes these two sub-problems. It then utilizes identified
prerequisites to refine the extracted key concepts and vice
versa. This model produces a related key concept set with
prerequisite relations among those concepts.

There are many education resources from which one could
build concept maps. For this work, we focus on textbooks
since they often provide a comprehensive list of domain con-
cepts and are often used as major educational resources
in schools, colleges and universities. Educational resources
such as textbooks and slides can provide implicit knowledge
structures for knowledge graph extraction. For example,
structural information such as table of contents (TOC) of a
textbook can be very useful in identifying concept relation-
ships. We feel this method could be easily generalized to
other education resources with structured information such
as slides and courses. We then augment “inside-the-book”
knowledge with web content (for now, Wikipedia), thus en-
riching the content of a specific book with complementary
information. As described in Section 4.4, we will empir-
ically verify that using such complementary resources can
give quality concept information at the secondary school and
undergraduate level. In summary, our contributions are:
• The first attempt, to the best of our knowledge, to use

textbooks to extract concept maps with explicit prerequisite
relationships among the concepts.
• A set of principled methods that utilize both Web

knowledge (Wikipedia) and the rich structure in textbooks
to identify prerequisite relationships among domain con-
cepts.
• An optimization framework that jointly solves the two

sub-problems of concept map extraction and linkage.
• The generation of datasets from books in six different

educational domains to show how our methods work.
Related work is introduced in Section 2. The joint op-

timization model for concept map extraction is presented
in Section 3. We discuss the data preparation and baseline
models in Section 4 and experimental results in Section 5.
A case study on the subject of geometry is presented in Sec-
tion 6 followed by conclusions and future work.

2. RELATED WORK
Early work on the problem of identifying knowledge graphs

[6] inferred knowledge bases from a collection of noisy facts.
More recently, ontology was used in the construction of a
knowledge graph [13, 27]. [13] refined a knowledge base
using relations and candidate facts found in an ontology.
Building on earlier work [13], a probabilistic soft modeling
framework [27] was used to jointly infer entities, categories
and relations. Knowledge graph completion uses external
sources (e.g., free text) to extract text patterns for certain
relationships [3, 23, 29, 12, 34, 45, 8, 37]. In this line of work,
relational facts are considered among existing word entities
with a focus mainly on completing and extending an exist-
ing knowledge base. Our work differs from these work in
that we consider scientific and mathematical concepts and
the prerequisite dependencies between these concepts.

Other related research is key phrase detection using Wiki
pedia. Early work [4] explored Wikipedia as a resource for
detecting key phrases in open text and used a disambigua-
tion statistical learning method to compare lexical context
around an ambiguous named entity in the content of can-
didate Wikipedia pages. Previous work also identified key
phrase by considering the interdependence between Wikipedia
candidates [9, 11, 19, 22, 15, 28] to obtain coherent key
phrases for documents.

More related we feel, concepts have been extracted from
textbooks[38] and the textbook structure was used to or-
ganize the concepts, but this was done without considering
explicit relationships between concepts. Instead of solely
extracting entities from documents, our work constructs a
concept map with both key concepts and their relationships.
Moreover, our optimization model reinforces the mutual im-
portance between the key concept extraction and prerequi-
site relationship identification and jointly optimizes the two
sub-problems.

For concept prerequisite inference, [35] utilized PageR-
ank and a random walk with restart scores [35]. The differ-
ence between reference links in any two Wikipedia articles
[16] was also considered and a learning-to-rank method [44]
constructed a concept graph with prerequisite relationships
between courses.

Extracting concept maps with prerequisite relationships
have also been studied in e-learning [36, 14, 39]. Concept
maps [36] were derived from prerequisite relationships from
ontologies by translating instances and interactions among
instances into concept relationships in a knowledge graph.
Association rule mining [14] was applied on learners’ test
records to derive concept maps with prerequisite relations.
[39] explored prerequisite relationships among concepts by
looking at topic coverage of each concept.

3. JOINT KNOWLEDGE GRAPH EXTRAC-
TION FROM TEXTBOOKS

Here, we introduce our notation and describe how we
jointly extract key concepts as well as the prerequisite re-
lations. We define c ∈ C as a concept where C is a set
of Wikipedia concepts, s ∈ S for a subchapter in the text-
book. The term “subchapter” refers to all the headings in
the TOC. For instance, both 1.1 and 1.1.1 are subchapters.
A key concept in a book chapter is a concept which is not
only mentioned but also discussed and studied in the sub-
chapter. The input to our extractor consists of a digital book
B with a list of titles, chapter number and contents for all
its chapters. Each chapter contains one or more key con-



cepts. The output is a concept map G, which is represented
as a set of triples in the form {(c1, c2, r)|c1, c2 ∈ C, r ∈ R},
where R = {0, 1} is the prerequisite relationship, r takes
value 0 when c1 and c2 have no prerequisite relation; and
takes value 1 when c1 is c2’s prerequisite. We use CS =
{csip ∈ {0, 1}|1 ≤ i ≤ |C|, 1 ≤ p ≤ |S|}, to indicate concept
appearance in subchapter, where csip takes value 1 when the
ith concept is a key concept in the pth subchapter; otherwise
takes 0. Our goal is to optimize CS and R in order to obtain
a global concept map.

3.1 Concept Map Extraction

3.1.1 Key Concept Extraction
Intuitively, if concept c is a key concept in subchapter

s, it should have these few properties: 1). Local Relat-
edness: Key concept c should be strongly related to sub-
chapter s. For instance, the concept and book chapter share
similar topics; 2). Global Coherence: We argue that ex-
tracted key concepts should be coherent in the following way:
Less redundancy: Chapters do not always discuss all of
the same concepts. Information overlap between concepts in
different chapters should be minimized. For instance, given
a geometry textbook, if subchapter 2.1 covers “Triangle” in
detail, subchapter 3.1 should not cover this concept in detail
again.

Note that here we mention both concept-concept related-
ness and concept-chapter relatedness. We denote all related-
ness as one symmetric similarity function f(·, ·), which can
take both the concept and chapter as arguments. We will
discuss the definition of f(·, ·) later in this section. Given
f(·, ·), the following objective function is proposed to derive
the concept-subchapter matrix CS from the aforementioned
properties:

P1(CS) = α1

|C|∑
i=1

|S|∑
p=1

csipf(ci, sp) (1)

+α2

|C|∑
i,j=1

|S|∑
p 6=q

csipcsjqf(ci, cj), (2)

where I(·) ∈ {1,−1} is an indicator function and returns 1
if the statement holds and returns −1 otherwise. αs are the
term weights.

The first term corresponds to the local relatedness at-
tributes and captures the relatedness between candidates
and book chapter. This term should be maximized to select
candidates similar to the book chapter. The second term
is used to reduce redundancy in the concept map. For this
term, we calculate the pairwise similarity between selected
concepts in different chapters as the redundancy in the ex-
tracted concept map and this value should be minimized.

3.1.2 Prerequisite Relationship
We consider a pair of concepts to have a prerequisite

relationship if they are: 3). Topically Related: If two
concepts cover different topics, it is unlikely that they have
prerequisite relationships. 4). Complexity Level Dif-
ference: Not all pairs of concepts with similar topics have
prerequisite relationships. For example, “isosceles triangle”
and “right angled triangle” cover similar topics but do not
have learning dependencies. Thus, given two concepts, it

is necessary to identify whether one concept is basic while
another one is advanced. We denote complexity level of a
concept as l(·) and later discuss the definition of l(·). Given
l(·), we define the following optimization function for R:

P2(R) = α3

|C|∑
i,j=1,i 6=j

rijf(ci, cj) + α4

|C|∑
i,j=1

rij(l(ci)− l(cj)). (3)

The first term corresponds to the Topically Related attributes
and should be maximized. The second term is used to mea-
sure the Complexity Level Difference between two concepts
and we want this value to be maximized.

3.1.3 Joint Modeling
To reinforce the mutual benefit between two sub-problems,

we propose 5). Order coherence: Concepts should not be
discussed without introducing their prerequisites, i.e., given
a concept, prerequisite concepts should be introduced before
this concept and subsequent concepts should be introduced
after the concept. The following function is proposed to
derive this mutual benefit property:

P3(CS,R) = α5

|C|∑
i,j=1

|S|∑
p,q=1

I(p < q)csipcsjqrij . (4)

In summary, the global objective function Λ(CS,R) = P1(CS)+
P2(R) +P3(CS,R) +β1‖CS‖+β2‖R‖ consists of P1 for key
concept extraction, P2 for prerequisite relationship extrac-
tion, P3 for mutual benefit modeling and L1 regularization
terms to control model complexity and is maximized.

3.1.4 Optimization
We maximize Λ to obtain the optimal concept map by

adopting the Metropolis-Hasting algorithm to optimize CS
and R respectively. ∀cs ∈ CS, we calculate the value of Λ
using current value of cs and the flipped value of cs (denoted

as cs
′
). We follow the following update rule to update CS.

σCS(cs, cs
′
) =

{
1, if Λ(R(n), CS(n), cs

′
) ≤ Λ(R(n), CS(n), cs).

e−β(Λ(R(n),CS(n),cs
′
)−Λ(R(n),CS(n),cs)), otherwise.

Similarly, ∀r ∈ R, we perform updates according to the
following update rule:

σR(r, r
′
) =

{
1, if Λ(R(n), CS(n), r

′
) ≤ Λ(R(n), CS(n), r).

e−β(Λ(R(n),CS(n),r
′
)−Λ(R(n),CS(n),r)), otherwise.

3.2 Representation Schemes
We explore different schema for book chapter/concept

content representation and then derive measures for con-
cept/book chapter similarity f(·, ·) and the concept com-
plexity level l(·). If multiple measures are derived for the
same attribute, we adopt an equal weighted sum of different
measures as the value of this attribute.

3.2.1 Word Based Similarity
We represent each chapter using words appearing in the

chapter and each concept using a bag-of-word representa-
tion from the word content in their Wikipedia pages. Stan-
dard text preprocessing/weight procedures, including case-



folding, stop-word removal and term frequency-inverse doc-
ument frequency(TF-IDF) are applied. Based on this repre-
sentation, we define the concept-chapter similarity function
f(·, ·) (applied in Equation 1) as a combination of the fol-
lowing measures:
• Title match: This feature measures the relatedness be-
tween the concept tile and the chapter/concept title. Given
a book chapter/concept title tb and a Wikipedia candidate
title tw, if tw is in tb or tw is tb , T itlematch(tb, tw) = 1;
Otherwise, T itlematch(tb, tw) = 0.
• Content cosine similarity: This feature measures the co-
sine similarity between the word TF-IDF vectors of chap-
ter/concept contents.
• Title Jaccard similarity: This feature computes the Jac-
card similarity between the chapter/concept title.
• Sustained periods in subchapters: A sustained period of a
concept in a subchapter is the period from its first appear-
ance to its last appearance. When the sustained period of a
candidate concept in a subchapter is longer, it is more likely
that this concept is important in this chapter.

We introduce one additional measure for concept-concept
similarity. This concept-concept measure together with the
other four aforementioned measures are used for concept-
concept similarity and applied in Equation 2, and the first
term in Equation 3.
• Concept co-occurrences: by counting the co-occurrences
of two concepts lies within a sentence from either a book
chapters or a Wikipedia page.

We also derive the following measures for a concept’s
complexity level based on its Wikipedia anchors. These mea-
sures are used in the second term in Equation 3.
• Supportive relationship in concept definition: A is likely
to be B’s prerequisite if A is used in B’s definition. Here,
we use the first sentence in the concept’s Wikipedia page
as its definition. Supportive(A,B) = 1 if A appears in
B’s definition. For instance, “Logarithm” is used to define
“Natural logarithm” whose definition is “The natural loga-
rithm of a number is its logarithm to the base e... ” and
Supportive(logarithm , natural logarithm) = 1.

3.2.2 Word Embeddings
This method maps concepts from the vocabulary to vec-

tors of real numbers in a low-dimensional space [21]. We
use word2vec which discovers lower dimensional vectors with
two-layer neural networks using the contexts and syntactic
of concepts. The concept similarity is defined as the co-
sine similarity of two concepts’ embeddings, which is used
in Equation 2 and the first term in Equation 3.

3.2.3 Wikipedia Anchors
Besides the content information, millions of cross-page

links in Wikipedia are also useful in detecting concept relat-
edness and concept complexity levels. Given two concepts,
we calculate the following measures as their similarity and
use these measures in Equation 2, and the first term in Equa-
tion 3.
• Wikipedia link based Jaccard similarity: Given two con-
cept, this feature computes the Jaccard similarity of the in-
links/out-links of their Wikipedia page.
• Wikipedia link based semantic similarity: This feature
computes the semantic relatedness of two concepts based

on their Wikipedia links [42].

1− max(log |Qi|, log |Qj |)− log |Qi ∩Qj |)
logWall −min(log |Qi|, log |Qj |)

,

where Qi is the set of Wikipedia concepts which link to wi
and Wall be the total number of concepts in Wikipedia.

We also derive the following measures for a Wikipedia
concept’s complexity level and use these three measures in
the second term in Equation 3.
• Number of in-links/out-links: This feature returns the
number of in-links/out-links in the concept Wikipedia page.
• Relational strength in textbook/Wikipedia: Relational strength
RS(wi, wj) measures the semantic relatedness between two
concepts using concept co-occurrence and distance in the
same sentence [5]:

log(
nij/max(n)

avg d2
ij/max(avg d2)

), i 6= j,

where nij is the co-occurrence of concept i and j within a
sentence and avg d2

ij is sum of the distance of two keywords
divided by the number of times two keywords appeared in
the same sentence. If two concepts are close within in a lot
of sentence in articles, implies that their relationship is also
stronger than the others.

avg d2
ij =

nij∑
m=1

d2
m

nij
, i 6= j,

• RefD: [16] defines a new metrics measuring the prereq-
uisite relationships between concepts using Wikipedia links
between two concepts. If most related concepts of A refer to
B but few related concepts of B refer to A, then B is more
likely to be a prerequisite of A.∑|W |

i=1 v(wi,B)·u(wi,A)∑|W |
i=1 w(wi,A)

−
∑|W |

i=1 v(wi,A)·u(wi,B)∑|W |
i=1 w(wi,B)

,

where W = {w1, ..., w|W |} is the concept space and |W |
is the size of the concept space; u(wi, A) weights the im-
portance of wi to A; and v(wi, A) is an indicator showing
whether wi has a Wikipedia link to A.

3.2.4 Textbook Structure
The TOC of textbooks contains implicit prerequisite re-

lationships between concepts since textbooks usually intro-
duce concepts based on their learning dependencies. There-
fore, we define TOC distance between two concepts as the
distance between their subchapter numbers. This feature
is used to measure complexity level difference between con-
cepts and applied in the second term in Equation 3.

Given two concepts A and B, ai and bi are used to denote
their chapter number arrays. For example if A is in chapter
1.1, then a1 = 1 and a2 = 1. We define the TOC distance
in textbooks between A and B as: TOCdistance(a, b) =
(ai− bi)/(βi−1) where i is the smallest index such as ai 6= bi
and β is a pre-specified decay parameter which is empiri-
cally set as 2. For instance, given a concept “HTTP” from
chapter 2.3.1 and “HTTP message body” from chapter 2.3.2,
TOC distance between them is 0.25 and “HTTP” could be
“HTTP message body”’s prerequisite. Notice that a concept
can serve as the key concept in multiple chapters and the
value of the TOC distance feature between two concepts is
the average TOC distance of all pairs of TOC of these two



concepts. This measure is used in second term in the second
term in Equation 3.

4. EXPERIMENT SETTINGS
4.1 Dataset

In order to build a test bed for concept map extraction,
we manually construct concept maps using six widely-used
textbooks: computer networking 1, macroeconomics 2, pre-
calculus 3, databases 4, physics 5, and geometry 6.

To construct the final dataset, we first manually label
key concepts: 1) Extract all Wikipedia concepts that ap-
pear in each book chapter. 2) Given a candidate concept
ci with title tw, we select it as a key candidate of subchap-
ter j if T itlematch(tw, tbj) = 1 where tbj is the title of the
subchapter j, or ci is ranked within top− 30 among all can-
didates in subchapter j based on Content cosine similarity
feature. 3) Label the candidates as “key concept” or “not
key concept” and obtain a set of key concepts for this area.
Then for each pair of key concepts A and B , we manually
label them as “A is B’s prerequisite”, “B is A’s prerequisite”
or “No prerequisite relationship”. Table 1 shows character-
istics of the dataset. For each area, three graduate students
with corresponding background knowledge are recruited to
label the data and we take a majority vote of the annotators
to create final labels. We achieve an average 79% correla-
tion for the key concept labeling task and an average 83%
correlation for the concept relationship labeling task.

4.2 Baseline - Key Concept Extraction
4.2.1 TextRank

TextRank is a method widely used in key sentence and
keyphrase extraction [20]. The general procedure of text
rank is to build up a graph using candidate key concepts as
vertices and co-occurrence of two candidates within a sen-
tence as the weight on the edge between them. Then the
algorithm iterates over the graph until it converges and sorts
vertices based on their final scores to identify key concepts.

4.2.2 Wikify
Wikify detects significant Wikipedia concepts within un-

structured texts. We use Wikipedia Miner developed in [22]
to link book contents with Wikipedia concepts.

4.2.3 Supervised Key Concept Extraction (Supervised
KCE):

Based on the local relatedness and global coherence at-
tributes proposed in Section 3.2, we propose the following
features for key concept learning from each subchapter.
1Kurose, James. F. (2005). Computer networking: a top-
down approach featuring the Internet. Pearson Education
India.
2Mankiw, N. Gregory.(2014). Principles of macroeconomics.
Cengage Learning.
3Stewart, James, Lothar Redlin, and Saleem Watson. Pre-
calculus: Mathematics for calculus. Cengage Learning,
2015.
4Ramakrishnan, Raghu, and Johannes Gehrke. ”Database
management systems.”, 2000.
5Mark Horner, Samuel Halliday, Sarah Blyth, Rory Adams,
Spencer Wheaton, ”Textbooks for High School Students
Studying the Sciences”, 2008
6Dan Greenberg, Lori Jordan, Andrew Gloag, Victor Ci-
farelli, Jim Sconyers,Bill Zahnerm, ”CK-12 Basic Geometry”

Local Features: We use features defined in Section 3.2
which capture the relatedness between concepts and book
subchapters, i.e., Title Match, Content cosine similarity, Ti-
tle Jaccard similarity, Sustained periods in subchapters of the
concept, are used as local features in concept extraction.
Global Features: Global features include two sub-set of
features: redundancy features and order coherence features.
Redundancy Features: This set of features measure the infor-
mation overlap that a candidate ci can possibly bring into
the extracted concept set. Given the ith candidate in jth

chapter, we calculate the similarity between this candidate
and other candidates in different subchapters as the value
of the redundancy feature of this candidate:

Red(csi) =

|C|∑
i,j=1

|S|∑
p 6=q

csipcsjqf(ci, cj),

where f(cski, cspj) is the similarity between candidate cski
and cspj and where I(·) ∈ {1,−1} is an indicator function
and returns 1 if the statement holds and returns −1 other-
wise.

Section 3.2 defines different semantic relatedness mea-
surements and all these measurements can be applied to
calculate redundancy features.
Order Coherence Features: Besides less redundancy attributes,
we also expect consistent learning order in concepts extracted
from the book, i.e., given a concept cski in subchapter i, we
expect that all cski’s prerequisites appear in subchapters be-
fore i and all cski’s subsequent concepts appear in subchap-
ters after i. Given candidate cski in the kth subchapter,
we define features orderCorr to capture the global learning
order of the extracted concepts :

orderCorr(ci) =

|C|∑
j=1

|S|∑
p,q=1

I(p < q)csipcsjqrij

|C|∑
j=1

|S|∑
p,q=1

csijcsjq|rij |
.

Equation 4.2.3 computes the percentage of concepts that
are appropriately ordered based on the ci’s prerequisite re-
lationships.

We use SVMrank to predict rankings of Wikipedia can-
didates for each subchapter with data from one book as test-
ing data and data from other five as training data.

4.3 Baseline - Prerequisite Relationship Iden-
tification

4.3.1 Hyponym-Hypernym
A hyponym is a concept whose semantic field is included

within that of another concept (hypernym) and in this work,
we use hyponym-Hypernym to as a baseline method of deriv-
ing prerequisite relationships. Lexico-syntax pattern based
extraction methods are popular methods for extracting hy-
ponym relationships between concepts because they offer ef-
fective text processing text. We adopt the10 lexico-syntactic
patterns selected for hyponymy-hypernymy pattern match-
ing in [40], as shown in Table 2.

4.3.2 Supervised Relationship Identification (Supervised
RI)

For concept relationship extraction, we utilize Topically
Relatedness Features and Complexity Level Difference Fea-



Domain Network Economics Precalculus Geometry Database Physics
# subchapter 98 37 23 48 90 152
# Key concepts per chapter 3.72 4.54 3.09 3.16 1.41 3.54
Candidate concepts per subchapter 70.53 84.16 70.21 55.89 49.17 68.94
# labeled pairs 1500 877 1171 1305 529 1517
# pairs with relationships 257 157 222 186 96 208

Table 1: Physical characteristics of books. # labeled pairs is the number of candidate concept pairs labeled as whether
two concepts have prerequisite relationships. # pairs with relationships is the number of concept pairs with prerequisite
relationships in all the labeled pairs.

NP2 such as NP1 NP1, one of NP2
such NP2 as NP1 NP1 (and|or) other NP2
NP1 is (a|an) NP2 NP2 consist(s) of NP1
NP2 includ(s|es|ing) NP1 NP2 (like|, specially) NP1
NP1 (is|are) called NP2 NP1 (in|belong to) NP2

Table 2: Extracted Lexico-syntax patterns. NP1 represents
a subsequent Noun Phrase (NP) and NP2 represents a pre-
requisite Noun Phrase (NP).

tures introduced in Section 3.2 to identify concept prereq-
uisite relationship. Topically Relatedness measures include
Title match, Content cosine similarity, Title Jaccard sim-
ilarity, Wikipedia link based Jaccard similarity, Wikipedia
link based semantic similarity, Relational strength in text-
book/Wikipedia. Complexity Level Difference features in-
clude Supportive relationship in concept definition, RefD,Number
of in-links/out-links, TOC Distance.

Then we perform a binary class classification using SVM
to identify prerequisite relationships with five books as train-
ing data and one book as testing data.

4.4 Wikipedia Coverage of Concepts
Wikipedia has previously been utilized as a controlled

vocabulary for topic indexing [18, 19] and key phrase ex-
traction [24]. A few studies have examined Wikipedia cov-
erage of academically related topics [25, 30, 31, 32]. Though
some work showed that Wikipedia does not properly cover
academic content on the front end of science, previous stud-
ies [25, 32] have demonstrated that Wikipedia’s coverage of
topics is comprehensive for secondary school and undergrad-
uate education.

In order to further validate the coverage of the extracted
concept maps, we conducted the following experiments. For
each book, three graduate students with corresponding back-
ground knowledge are recruited to manually extract all con-
cepts from each subchapter (randomly sampled from the
book), and label whether these concepts have a correspond-
ing Wikipedia page. We found that 88% of the concepts
(Computer network: 85%, Macroeconomics: 86%, Precalcu-
lus: 91% , Geometry: 97%, Physics: 85%, Database: 89%)
in the books are covered by Wikipedia and this provides
some empirical evidence of reasonable coverage of the ex-
tracted concept maps.

4.5 Parameter Selection
As shown in Equation 2 and Equation 3, our concept

maps are shaped by parameters α = {αi, i = 1, 2, 3, 4} and
β = {βj , j = 1, 2} where αs are the term weight in the opti-

mization function and βs are the weight of L1-regularization.
We test different methods in a “leave one book out” manner,
i.e, when testing on one book, we train our model using the
other 5 books to select the optimal combination of parame-
ters.

4.6 Model Initialization
• Concept-Subchapter Matrix Initialization: To initialize CS(·),
we use two features Title match and Content cosine simi-
larity proposed in Section 3.2 which measure the local sim-
ilarity between a candidate and a book chapter. We set
csij = 1, i.e., candidate ci is a key concept in subchapter j,
if T itlematch(ci, tbj) = 1 where tbj is the title of the sub-
chapter j, or ci is ranked within top − 5 based on cosine
similarity between chapter/concept contents feature.
• Concept Relationship Matrix Initialization: To initialize
the concept relationship matrix R(·), given two concepts ci
and cj , we set rij = 1 if their complexity level difference is
higher than threshold t1 and topically relatedness is higher
than threshold t2. Empirically, t1 is set as mean value of the
overall complexity level difference and t2 as mean value of
the overall topically relatedness.

5. EXPERIMENTAL RESULTS

5.1 Effect of Textbook Information
In this section, we present how textbook structures help

concept map extraction.
Figure 2 shows ranking precisions of key concept extrac-

tion on six books. For the baseline methods presented, we
needed to manually decide the number of key concepts in
each subchapter. We thus present the performance of top−1,
top− 3, and top− 5 candidates from the concept extraction
phase respectively. As shown, we test different combinations
of features, with the local features derived from different as-
pects of relatedness between book subchapter and Wikipedia
candidates, and global features which consider the global
coherence of the book structure. The results show that in-
corporating our proposed global features (See “Supervised
KCE” in Figure 2) into the extractor does achieve signif-
icantly higher precision than other methods which do not
consider book structure (TextRank, Wikify and Local fea-
tures).

In Table 3, we present the F-1 score of concept rela-
tionship identification using top − 1, top − 3, and top − 5
candidates from the concept extraction phase respectively.

The results show that both features derived from Wikipedia
and textbooks features achieve significantly higher F-1 score
than hyponym-hypernym pattern does. Moreover, we ob-
serve that textbook features outperform Wikipedia features
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Figure 2: Precision@n (n=1,3,5) for key concept extraction from six textbooks. Local refers to the supervised learning model
using local features defined in Section 4.2.3 with same experiment settings as Supervised KCE.

Hyponym Wiki Textbook
# candidate 1 3 5 1 3 5 1 3 5
Network 0.21 0.32 0.19 0.45 0.56∗ 0.54 0.49 0.6∗ 0.57
Economics 0.25 0.36 0.3 0.55 0.56 0.5 0.55 0.58 0.52
Precalculus 0.29 0.42 0.36 0.52 0.56 0.47 0.44 0.52 0.57
Geometry 0.28 0.36 0.41 0.48 0.56∗ 0.53 0.55 0.61∗ 0.59
Database 0.17 0.38 0.44 0.49 0.55 0.45 0.5 0.53 0.52
Physics 0.23 0.37 0.44 0.5 0.55 0.58∗ 0.6 0.58 0.62∗

Table 3: F-1 score for concept relationship prediction. Hy-
ponym refers to the hyponym-hypernym baseline method.
Textbook/Wikipedia are supervised learning methods with
features textbooks/Wikipedia features using same experi-
ment settings as Supervised RI. ∗ indicates when textbook
features are statistically significantly better (p < 0.01) than
the Wikipedia features.

(Textbook features include Concept co-occurrence in book
chapters, Relational strength in book contents and TOC
distance measures. Wikipedia features include concept co-
occurrence in Wiki pages, Content cosine similarity, RefD,
Wikipedia link based semantic similarity, Relational strength
in Wikipedia and Supportive relationship in concept defini-
tion measures.). This is because textbooks are designed for
education purpose and provides a better knowledge struc-
ture than web knowledge base does. Another potential rea-
son is that features that utilize TOC information (TOC dis-
tance feature) consider not only concept complexity level dif-
ference but also their semantic relatedness. If two concepts
are introduced in neighbor subchapters (say subchapter 1.1
and 1.2), this feature reveals that two concepts might be se-
mantic similar between authors usually put related concepts
in neighbor chapters.

5.2 Joint Optimization
Table 3 shows the prediction accuracy of the baseline

methods and the joint optimization model.
The proposed optimization model often outperforms all

others with only an exception on precision@1 of database,
as a trade-off to performance of concept relationship pre-
diction, as shown in Table 4. Our joint optimization model
consistently outperforms the strongly baseline in F1-score on
all the six textbooks. In addition, the proposed model can
decide the number of concepts in each subchapter automat-
ically by optimizing the proposed objective function while
the baseline models depend on a manually decided value.

Supervised RI Joint Opt
# candidate 1 3 5
Network 0.52 0.62 0.57 0.63
Macroeconomics 0.55 0.67∗ 0.63 0.7∗

Precalculus 0.54 0.61 0.63∗ 0.66∗

Geometry 0.52 0.64 0.67∗ 0.71
Database 0.51 0.58 0.49 0.55
Physics 0.58 0.65∗ 0.62 0.69∗

Table 4: F-1 score for concept relationship prediction
with/without joint optimization. ∗ indicates when the joint
optimization model is statistically significantly (p < 0.01)
better.

5.3 Measurement Importance
In this section, we develop some insights regarding fea-

ture importance by reporting performance of the concept
extractor and relationship identifier using different feature
combinations.
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Figure 3: Precision@n (n=1,3,5) for key concept extraction from six textbooks with/without joint optimization.

Title Features Content Similarity Features
# candidate 1 3 5 1 3 5
Network 0.32 0.29 0.19 0.61 0.64 0.65
Macroeconomics 0.43 0.39 0.32 0.72 0.65 0.54
Precalculus 0.41 0.36 0.27 0.66 0.68 0.59
Geometry 0.46 0.38 0.32 0.79 0.76 0.7
Database 0.24 0.18 0.11 0.66 0.69 0.58
Physics 0.3 0.22 0.16 0.68 0.62 0.59

Table 5: Precision@n (n=1,3,5) for key concept extrac-
tion from six textbooks using different feature combina-
tions. Title/Content features include local and global fea-
tures derived from title/content information as defined in
Section 4.2.3.

Table 5 shows the ranking precisions of measurements
using title information and that using content information.
As shown, content similarity features outperform title fea-
tures since compared to subchapter titles, subchapter con-
tents contain more information and achieve much higher re-
call rate in key concept extraction.

Figure 6 shows the performance of relationship predic-
tion using Topically Relatedness features and Complexity
Level Difference features defined in Section 4.3.2 respec-
tively. We observe that complexity level difference features
perform better than content similarity features. This sug-
gests that by capturing which feature is more basic, we can
achieve better performance than only considering topic re-
latedness between features. We also observe that more fun-
damental subjects such as precalculus, geometry and physics
have better performance than advanced subjects such as
computer networks and database. A potential reason is that
for those domains, different textbooks provide very similar
learning and TOC structures, while for advanced subjects

Topically Relatedness Concept Complexity Level
# candidate 1 3 5 1 3 5
Network 0.41 0.49 0.46 0.56 0.58 0.5
Macroeconomics 0.47 0.52 0.43 0.55 0.6 0.51
Precalculus 0.53 0.58 0.61 0.55 0.6 0.62
Geometry 0.42 0.45 0.53 0.49 0.53 0.56
Database 0.52 0.59 0.56 0.53 0.59 0.61
Physics 0.3 0.22 0.16 0.64 0.62 0.59

Table 6: F1-score@n (n=1,3,5) for the relationship predic-
tion using different measures.

textbooks organize knowledge quite differently. However,
this remains to be determined.

6. CASE STUDY
Here we present a case study on concept maps extracted

for geometry. From Figure 4c and 4d, we can observe that
by considering both the lexical similarity and semantic re-
latedness, the Supervised KCE + Supervised RI method,
here and after, the supervised learning method, and joint
optimization model achieve better performance in both con-
cept extraction from book chapters and relationship iden-
tification than the TextRank+Hyponym-hypernym method
(see Figure 4a) and Wikify+Hyponym-hypernym method
(see Figure 4b). Moreover, supervised method and joint
optmization model consider book structure information and
this reaffirm the effectiveness of textbook structure in key
concept extraction and concept relationship identification.

By capturing the mutual dependencies between two sub-
problems, the joint optimization model achieves better pre-
diction accuracy than the supervised learning method. For
instance, supervised learning method fails to extract “Ray”
and the prerequisite dependency between “Ray” and “Angle”
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Figure 4: Case study for geometry concept maps.

while joint optimization model makes the correct prediction.
A possible reason is that“Ray” is not extracted as a key con-
cept because its content is not very similar to the content
of the book chapter (compared to other candidates in this
chapter). However, the joint optimization model identifies
that “Ray” is likely to be prerequisite of “Angle” which is
highly ranked as a key concept in some book chapters.

7. CONCLUSION AND FUTURE WORK
We describe measures that identify prerequisite relation-

ships between concepts. We propose a joint optimization
model for concept map extraction from textbooks that uti-
lizes the mutual interdependency between key concept ex-
traction and the identification of related concepts from knowl-
edge structures in Wikipedia. Experiments on six concept
maps created manually from six different textbooks show
that the proposed method gives promising results. To our
knowledge, this is the first work that utilizes the implicit pre-
requisite relationships embedded in textbook table of con-
tents (TOCs) for prerequisite relationship extraction. Fu-
ture directions would be to construct concept maps from
multiple books from the same area or use similar textbooks
to modify each others concept maps. Another direction
would be to develop a semi-automatic method for building
large scale education area concept maps.
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