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Abstract

The increasing amount of education-related data provides a valuable research
opportunity for developing data-driven machine learning methods for building
educational applications. This dissertation investigates machine learning solutions
for two educational applications: concept prerequisite learning and automatic
distractor generation.

A prerequisite relation describes a fundamental directed relation among concepts
in knowledge structures. The first part of this dissertation focuses on the concept
prerequisite learning problem, the study of machine learning methods for automatic
concept prerequisite discovery. Specifically, this dissertation explores the use
of Wikipedia – the largest free online encyclopedia – for concept prerequisite
learning and presents the following studies towards automatically measuring concept
prerequisite relations. First, a simple but effective link-based feature, RefD, is
proposed for measuring prerequisite relations among concepts. Second, how concept
prerequisite relations can be recovered from university course dependencies is
explored. Third, active learning of concept prerequisite learning is studied to deal
with the lack of large-scale concept prerequisite labels. The dissertation explores
the mathematical nature of prerequisite relation being a strict partial order and
proposes an active learning framework tailored for such relation. The proposed
approach incorporates relational reasoning not only in finding new unlabeled pairs
whose labels can be deduced from an existing label set, but also in devising new
query strategies that consider the relational structure of labels.

Multiple choice questions (MCQs) are widely used to assess students’ knowl-
edge and skills. Among all methods for creating good MCQs, finding reasonable
distractors is crucial and usually the most time-consuming. The second part of
this dissertation investigates automatic distractor generation (DG). In contrast
with previous similarity-based methods, this dissertation presents two studies on
machine learning methods for DG. The first study proposes a generative model
learned from training generative adversarial nets to create useful distractors for
automatically creating fill-in-the-blank questions. The second work investigates how
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ranking models can be used to select useful distractors for MCQs. The proposed
models can learn to select distractors that resemble those in actual exam questions.

Finally, the dissertation introduces BBookX, a computer-facilitated book-
creation system. Using information retrieval techniques, BBookX is designed
to facilitate the online book-creation process by searching OERs. BBookX is an
actual educational application where the proposed methods for concept prerequisite
learning and automatic distractor generation could be applied.
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Chapter 1 |
Introduction

1.1 Background
There have been many computer-based learning systems from which a large amount
of education-related usage data can be gathered. Examples include Learning Man-
agement Systems, Intelligent Tutoring Systems (ITS) [32], and recently developed
Massive Open Online Courses (MOOCs). Their usage data provides a valuable
opportunity for developing data-driven machine learning methods for building
educational applications, which has gained increasing attention from computer
science subfields data mining and natural language processing (NLP).

In the field of educational data mining (EDM), researchers have investigated
learning methods for applications such as (i) student modeling [154], which includes
performance prediction [126], engagement modeling [136], undesirable student be-
havior detection [57, 104], student profiling and grouping [58], etc., (ii) planning
and scheduling [66], and (iii) automatic concept map construction [83]. With a
special focus on utilizing text information, the NLP community has been working
on educational applications including automated written response scoring/evalu-
ation [135], tools for second and foreign language learners [153], automatic test
question generation [118], educational dialog systems [98], automatic grammatical
error correction [120], plagiarism detection [43], etc. The use of machine learning
for building educational applications is still at an early stage, compared to the
extensive research on general machine learning. Note the major venues for such
studies have a relatively short history, with about 10 years for the EDM conference1

1The International Conference on Educational Data Mining
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and 15 years for the NLP BEA workshop2.
This dissertation research seeks to develop machine learning methods for two

educational applications: concept prerequisite learning and automatic distractor
generation. Before introducing the two tasks, we begin by defining the following
general terms that will be frequently used throughout this dissertation.

Definition 1 (Concept). A concept is defined as a general idea of something. To
be concrete, each concept in this dissertation corresponds to a Wikipedia entity/title.
For example, “Machine learning”, “Data mining”, “Natural language processing”
are all concepts.

Definition 2 (Prerequisite of a Concept). A prerequisite of a concept C is a concept
that is necessary to learn before one can proceed to understand C. For example,
“Linear algebra” is a prerequisite of “Deep learning”.

Definition 3 (Distractor). A distractor is an alternative answer used to sidetrack
students from the correct answer. Distractors are usually a part of multiple choice
questions. For example, “ADP” could be a distractor for the question, “A compound
which is found in all living cells and play a key role in energy transformations is
___,” of which “ATP” is the correct answer.

1.2 Concept Prerequisite Learning
A prerequisite relation describes a fundamental directed connection among concepts
in knowledge structures. Following the learning order that is consistent with the
underlying prerequisite relationship is crucial to successful and effective teaching
and learning processes. For the example shown in Figure 1.1, learning the concept
“Hidden Markov Model” requires first understanding prerequisites such as “posterior
probability” and “maximum likelihood”. Identifying prerequisite concepts is crucial
for a variety of other educational applications such as curriculum planning [5] and
intelligent tutoring systems [7]. It can be especially useful for online learning where
students face a large amount of educational resources. For example, prerequisite
information can be extremely helpful for students in MOOCs, who are typically
faced with hundreds of course choices. Because each university creates its own

2The Workshop on Innovative Use of NLP for Building Educational Applications
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Figure 1.1. Concept prerequisite relations. “A→ B” represents that the concept A is a
prerequisite of the concept B.

MOOCs and puts them on different MOOC platforms, there are usually no readily
identifiable prerequisite relations among courses from different universities or across
different platforms. In addition, manually organizing prerequisites from thousands
of MOOCs would be too time-consuming. This challenge motivates the need for
automatic prerequisite relation discovery methods.

The first part of this dissertation focuses on solving the concept prerequisite
learning problem [151], the study of machine learning methods for automatic
concept prerequisite discovery. Specifically, the dissertation focused on the concept
prerequisite learning problem defined as follows:

Definition 4 (Concept Prerequisite Learning Problem.). Given a pair of concepts
(A, B), predict whether A is a prerequisite of B.

Concept prerequisite learning is is a binary classification problem. Here, cases
where B is a prerequisite of A and where no prerequisite relation exists are both
considered negative.

A possible solution for developing scalable methods for automatic prerequisite
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discovery is to develop or integrate approaches that automatically infer such
prerequisites from the increasing amount of digital educational data. Available
data sources include knowledge bases, student assessment data, text books, course
materials, etc. This dissertation explores the use of Wikipedia – the largest
free online encyclopedia – for concept prerequisite learning and presents three
studies towards automatically measuring concept prerequisite relations, which are
summarized as follows.

1.2.1 RefD: A Link-based Feature for Measuring Concept Pre-
requisite Relations

As a semantic relation, concept prerequisite relation has not been well studied in
computational linguistics. The dissertation proposes a simple link-based feature,
namely reference distance (RefD) [90], that effectively models the relation by mea-
suring how differently two concepts refer to each other. Evaluations on two datasets
that include seven domains show that a Wikipedia-based RefD implementation
outperforms existing supervised learning-based methods.

1.2.2 Learning Concept Prerequisites from University Course
Dependencies

Besides using knowledge bases such as Wikipedia, this dissertation also investigates
how to recover concept prerequisite relations from course dependencies [94]. An
optimization-based framework is proposed to address the problem. The first real
dataset for empirically studying this problem is created, which consists of the
listings of computer science courses from 11 U.S. universities and their concept
pairs with prerequisite labels. Experiment results on a synthetic dataset and the
real course dataset both show that the proposed method outperforms existing
baselines.

1.2.3 Active Learning for Concept Prerequisite Learning

A major obstacle to extracting concept prerequisite relations at scale is the lack of
large-scale labels to enable effective data-driven solutions. This dissertation presents
the first study [93] to investigate the applicability of active learning to concept
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prerequisite learning. We propose a novel set of features tailored for prerequisite
classification and compare the effectiveness of four widely used query strategies.
Experimental results for domains including data mining, geometry, physics, and
precalculus show that active learning can be used to reduce the amount of training
data required. Given the proposed features, the query-by-committee strategy
outperforms other compared query strategies.

Mathematically, a prerequisite relation is a type of strict partial order, a mathe-
matical structure commonly seen in relational data. As a follow-up work for the
abovementioned study, this dissertation proposes an active learning framework [95]
for mining such relations subject to a strict order. The proposed approach incorpo-
rates relational reasoning not only in finding new unlabeled pairs whose labels can
be deduced from an existing label set, but also in devising new query strategies that
consider the relational structure of labels. Experiments on concept prerequisite
relations show the proposed framework can substantially improve the classification
performance with the same query budget compared to other baseline approaches.

1.3 Automatic Distractor Generation for Multiple Choice
Questions
Multiple choice questions (MCQs) are widely used as an assessment of students’
knowledge and skills. An MCQ consists of three elements: (i) stem, the question
sentence; (ii) key, the correct answer; and (iii) distractors, alternative answers
used to sidetrack students from the correct answer. See Figure 1.2 for examples of
MCQs. Among all methods for creating good MCQs, finding reasonable distractors
is crucial and usually the most time-consuming. The second part of this dissertation
investigates automatic distractor generation (DG), i.e., generating distractors given
the stem and the key to the question. DG is a crucial step for multiple choice
question generation (MCQG) because one of its main challenges is the generation
of “good” distractors which can distinguish knowledgeable test takers from less
knowledgeable ones, in the sense that the question becomes more effective at testing
a student’s knowledge.

Most existing methods for DG are based on semantic similarities [2, 54, 80].
Distractors are selected from a ranked list based on a weighted combination of
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1. What is the least dangerous radioactive decay?

(a) Beta decay (b) Alpha decay (c) Zeta decay (d) Gamma decay

2. If extension in spring is proportional to load applied then material obeys
___.

(a) Gravitational law (b) Newton’s law (c) Hooke’s law (d) Charles’s law

Figure 1.2. Examples of multiple choice questions. The correct answers are written in
bold text. Note the second MCQ is also a fill-in-the-blank question.

different similarity metrics, where the weights are determined by heuristics. In
contrast with previous similarity-based methods, this dissertation presents two
studies on machine learning methods for DG, which are summarized below.

1.3.1 Distractor Generation with Generative Adversarial Nets

We propose a generative model learned from training generative adversarial nets
(GANs) to create useful distractors for automatically creating fill-in-the-blank
questions [92]. Our method utilizes only context information and does not use
the correct answer, which is completely different from previous ontology-based
or similarity-based approaches. Trained on the Wikipedia corpus, the proposed
model can predict Wiki entities as distractors. Our method is evaluated on two
biology question datasets collected from Wikipedia and actual college-level exams.
Experimental results show that our context-based method achieves comparable
performance to a frequently used word2vec-based method for the Wiki dataset. In
addition, we propose a second-stage learner to combine the strengths of the two
methods, which further improves the performance on both datasets, with 51.7%
and 48.4% of generated distractors being acceptable.

1.3.2 Learning to Rank for Distractor Generation

We investigate how machine learning models, specifically ranking models, can be
used to select useful distractors for MCQs [91]. Our proposed models can learn to
select distractors that resemble those in actual exam questions, which is different
from most existing unsupervised ontology-based and similarity-based methods.
We empirically study feature-based and neural net based (NN-based) ranking
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models with experiments on the recently released SciQ dataset and our MCQL
dataset. Experimental results show that feature-based ensemble learning methods
(random forest and LambdaMART) outperform both the NN-based method and
unsupervised baselines. These two datasets can serve as benchmarks for distractor
generation.

1.4 Summary of Research Contributions
To summarize, the goal of this dissertation is to design machine learning meth-
ods tailored for two educational applications: concept prerequisite learning and
automatic distractor generation for multiple choice questions. The main research
contributions include:

• A simple but effective link-based feature for measuring concept prerequisite
relations. [90]

• A novel optimization-based method to learn concept-level prerequisite rela-
tions from course dependencies. [94]

• The first study of active learning for the concept prerequisite learning prob-
lem. [93]

• The first attempt to design active learning query strategies tailored for strict
partial orders. The proposed methods are applied to concept prerequisite
learning and appear to be successful on data from educational domains. [95]

• The first application of GANs to automatic distractor generation. [92]

• Supervised learning to rank methods for automatic distractor generation. [91]

1.5 Structure of the Dissertation
This dissertation presents the research described above. Specifically, Chapter 2
introduces a simple but effective link-based feature, RefD, for measuring concept
prerequisite relation, and Chapter 3 proposes an optimization framework to learn
concept prerequisites from university course dependencies. Chapter 4, then, in-
vestigates active learning for concept prerequisite learning. Chapter 5 explores
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the mathematical nature of prerequisite relation being a strict partial order and
proposes an active learning framework tailored for such relation. The focus shifts to
distractor generation in Chapter 6, which presents two studies on supervised learn-
ing methods for automatic distractor generation, and Chapter 7, which introduces
BBookX, an educational application where the proposed methods for distractor
generation and concept prerequisite learning would potentially be useful. Lastly,
Chapter 8 concludes the dissertation and discusses possible future work.
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Chapter 2 |
RefD: a Link-based Feature for
Measuring Prerequisite Relations
Among Concepts

2.1 Introduction
What should one know/learn before starting to learn a new area such as “deep
learning”? A key for answering this question is to understand what a prerequisite
is. A prerequisite is usually a concept or requirement before one can proceed to a
following one. And the prerequisite relation exists as a natural dependency among
concepts in cognitive processes when people learn, organize, apply, and generate
knowledge [82]. While there has been serious effort in understanding prerequisite
relations in learning and education [12, 123, 156], it has not been well studied as
a semantic relation in computational linguistics, where researchers focus more
on lexical relations among lexical items [113] and fine-grained entity relations in
knowledge bases [116].

Instead of treating it as a relation extraction or link prediction problem using
traditional machine learning approaches [151,169], we seek to better understand
prerequisite relations from a perspective of cognitive semantics [34]. Partially
motivated by that to understand a concept, one needs to understand all the related
concepts, we propose a metric that measures prerequisite relations based on a
simple observation of human learning. When learning concept A, if one needs to
refer to concept B for a lot of A’s related concepts but not vice versa, B would
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more likely be a prerequisite of A than A of B. Specifically, we model a concept
in a vector space using its related concepts and measure the prerequisite relation
between two concepts by computing how differently the two’s related concepts refer
to each other, or reference distance (RefD).

Our simple metric RefD successfully reflects some properties of the prerequisite
relation such as asymmetry and irreflexivity; and can be properly implemented for
various applications using different concept models. We present an implementation
of the metric using Wikipedia by leveraging the links as reference relations among
concepts; and present a scalable prerequisite dataset construction method by
crawling public available university course prerequisite websites and mapping them
to Wikipedia concepts. Experimental results on two datasets that include seven
domains demonstrate its effectiveness and robustness on measuring prerequisites.
Surprisingly, our single metric based approach significantly outperforms baselines
which use more sophisticated supervised learning. All the datasets are publicly
available upon request.

Our main contributions include:

• A novel metric to measure the prerequisite relation among concepts that
outperforms existing supervised learning baselines.

• A new dataset containing 1336 concept pairs in Computer Science and Math.

2.2 Measuring Prerequisite Relations
Our goal is to design a function f : C2 → R that maps a concept pair (A,B) to a
real value that measures the extent to which A requires B as a prerequisite, where
C is the concept space. How should a concept be represented in C? Since one
cannot understand a concept without access to all essential knowledge related to it,
such knowledge can be actually viewed as a set of related concepts. Thus, a concept
could be represented by its related concepts in C. For example, the concept “deep
learning” may be represented by concepts such as “machine learning”, “artificial
neural network”, etc.

Compared to prerequisites, a more common and observable relation among
concepts is a reference, which widely exists in various forms such as hyperlinks,
citations, notes, etc. Although a single evidence of reference does not indicate a
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Figure 2.1. An example of reference relations of two concepts, Data mining (A) and
Algorithm (B), with a prerequisite relation. An arrow represents a reference relation. The
dashed line separates two main concepts.

prerequisite relation, a large number of such evidences might make a difference.
For example, if most related concepts of A refer to B but few related concepts of B
refer to A, then B is more likely to be a prerequisite of A, as shown in Figure 2.1.
In order to measure prerequisite relations, we propose a reference distance (RefD),
which is defined as

RefD(A,B) =
∑k
i=1 r(ci, B) · w(ci, A)∑k

i=1w(ci, A)
−

∑k
i=1 r(ci, A) · w(ci, B)∑k

i=1w(ci, B)
(2.1)

where C = {c1, ..., ck} is the concept space; w(ci, A) weights the importance of ci to
A; and r(ci, A) is an indicator showing whether ci refers to A, which could be links
in Wikipedia, mentions in books, citations in papers, etc.

RefD enables several useful properties for the prerequisite relation: 1) normal-
ized: RefD(A,B) ∈ [−1, 1]; 2) asymmetric: RefD(A,B)+RefD(B,A)=0, which
means if A is a prerequisite of B then B is not a prerequisite of A; and 3) irreflexive:
RefD(A,A)=0, which means A is not a prerequisite of itself. To capture all three
possible prerequisite relations between a concept pair, RefD is expected to satisfy
the following constraints:

RefD(A,B)∈


(θ, 1], if B is a prerequisite of A

[−θ, θ], if no prerequisite relation

[−1,−θ), if A is a prerequisite of B

where θ is a positive threshold.
Equation 2.1 provides a general framework to calculate RefD. In practice, we

need to specify the concept space C, the weight w, and the reference indicator
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function r.

2.3 Wikipedia-based RefD Implementation
We now implement RefD using Wikipedia. As a widely used open-access encyclope-
dia, Wikipedia provides relatively up-to-date and high quality knowledge and has
been successfully utilized as explicit concepts [48]. Moreover, the rich hyperlinks
created by Wiki editors provide a natural way to calculate the reference indicator
function r.

Specifically, the concept space C consists of all Wikipedia articles. r(c, A)
represents whether there is a link from Wiki article c to A. For w(c, A), we
experiment with two methods:

• EQUAL: A is represented by the concepts linked from it (L(A)) with equal
weights.

w(c, A) =

1 if c ∈ L(A)

0 if c /∈ L(A)

• TFIDF : A is represented by the concepts linked from it with TFIDF weights.

w(c, A) =

tf(c, A) ∗ log N
df(c) if c ∈ L(A)

0 if c /∈ L(A)

where tf(c, A) is the number of times c being linked from A; N is the total
number of Wikipedia articles; and df(c) is the number of Wikipedia articles
where c appears.

2.4 Experiments
In order to evaluate the proposed metric, we apply it to predicting prerequisite
relations in Wikipedia, i.e., whether one article in Wikipedia is a prerequisite
of another article. Given a pair of concepts (A,B), we predict whether B is a
prerequisite of A or not. Both pairs where A is a prerequisite of B and pairs where
no prerequisite relation exists will be viewed as negative examples.
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Dataset Domain # Pairs # Prerequisites

CrowdComp

Meiosis 400 67
Public-key Cryp. 200 27
Parallel Postulate 200 25
Newton’s Laws 400 44
Global Warming 400 43

Course CS 678 108
MATH 658 75

Table 2.1. Statistics of CrowdComp and Course Datasets

RefD is tested on two datasets: CrowdComp dataset [151] and a Course pre-
requisite dataset collected by us. We compare RefD with a Maximum Entropy
(MaxEnt) classifier which exploits graph-based features such as PageRank scores
and content-based features such as the category information, whether a title of
concept is mentioned in the first sentence of the other concept, the number of times
a concept is linked from the other, etc. [151]. All experiments use a Wikipedia
dump of Dec 8, 2014.

2.4.1 Results on the CrowdComp Dataset

The CrowdComp dataset was collected using Amazon Mechanical Turk by Talukdar
et al. [151]. It contains binary-labeled concept pairs from five different domains,
including meiosis, public-key cryptography, the parallel postulate, Newton’s laws of
motion, and global warming. The label of the prerequisite relation for each pair is
assigned using majority vote. Details of the dataset are shown in Table 2.1.

Following Talukdar et al. [151], we evaluate different methods in a “leave one
domain out” manner, where data from one domain is used for testing and data
from other four for training. Classes in the training and testing set are balanced
by oversampling the minority class. Table 2.2 lists the accuracies of different
methods. In terms of average performance, RefD achieves comparable average
accuracy as MaxEnt. When TFIDF is used to calculate w, RefD performs better
than MaxEnt. Also we notice that our implementation of MaxEnt classifier achieves
higher accuracy than reported in the original paper, which may be due to the
difference between Wiki dumps used. In addition, we can see that there are large
differences in performance across different domains, which is mainly due to two
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Domain MaxEnt† MaxEnt EQUAL TFIDF

Meiosis 51 60.2 53 55.7
Public-key Cryp. 67.1 60.3 55.1 57.7
Parallel Postulate 64.7 73.6 70.5 67.9
Newton’s Laws 53.9 57.7 63.7 64.6
Global Warming 56.8 50.0 57.4 60.1
Average 58.7 60.4 60.0∗ 61.2∗

Table 2.2. Comparison of out-of-domain training accuracies of a MaxEnt classifier and
RefD using EQUAL and TFIDF weighting. MaxEnt† is the number reported by Talukdar
et al. [151]. MaxEnt shows the performance of our implementation. * indicates the
difference between RefD and MaxEnt is statistically significant (p < 0.01).

Method CS MATH
A P R F A P R F

MaxEnt 72.8 87.6 53.2 66.1 69.0 78.1 53 63.1
EQUAL 76.4∗ 80.4 69.9 74.7∗ 73.9∗ 78.4 67.3 71.9∗
TFIDF 77.1∗ 82.3 69.1 75.1∗ 70.3∗ 76.3 60.1 66.7∗

Table 2.3. Comparison of in-domain training accuracies, precision, recall, and F1
measure of MaxEnt and RefD using EQUAL and TFIDF weighting. * indicates the
improvement over MaxEnt is statistically significant (p < 0.01).

reasons. First, the coverage of Wikipedia for different domains may vary a lot.
Some domains are more popular and thus edited more frequently, leading to a
better quality of articles and a more complete link structure. Second, since the
ground-truth labels are collected by crowdsourcing and there is no guarantee for
workers’ knowledge about a certain domain, the quality of labels for different
domains varies.

2.4.2 Results on the Course Dataset

We also built a Course dataset with the help of information available on a university’s
course website containing prerequisite relations between courses. For example, “CS
331 Data Structures and Algorithms” is a prerequisite for “CS 422 Data mining”.
We get the prerequisite pairs by crawling the website and linking the course to
Wikipedia using simple rules such as title matching and content similarity. In order
to get negative samples, we randomly sample 600 pairs using concepts appearing
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Figure 2.2. Comparison of Precision-Recall curves of MaxEnt and RefD (using EQUAL
and TFIDF weighting) on the Course dataset.

in the prerequisite pairs. All pairs are then checked by two domain experts by
removing pairs with incorrect labels. Table 2.1 lists the information of the dataset.

Evaluation uses in-domain 5-fold cross-validation and classes are balanced by
oversampling the minority class. Table 2.3 lists the performance comparison of
different methods on accuracy, precision, recall and F1 score. We can see that
RefD outperforms MaxEnt in terms of accuracy, recall, and F1 score on both CS
and MATH domain. Because MaxEnt relies on many features but there are only
limited distinct positive samples in the dataset, it is more likely to overfit the
training data, which leads to high precision but low recall on test set. In order to
better compare precision and recall, we plot the Precision-Recall curves of different
methods, as shown in Figure 2.2. RefD shows a clear improvement in the area
under the Precision-Recall curve.

Comparing two weighting methods, we find that TFIDF performs slightly better
than EQUAL on CS while EQUAL has higher scores than TFIDF on MATH. Since
how to compute w in RefD is a crucial problem, our ongoing work is to explore
more sophisticated semantic representations to measure prerequisite relations. A
natural extension to the two simple methods here is to represent a concept using
WordNet [113], Explicit Semantic Analysis [48], or Word2vec embeddings [112].
Incorporating these representations may improve the performance of RefD.
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Figure 2.3. Average accuracy on two datasets with a given threshold of RefD using
TFIDF weighting.

Concept RefD Concept RefD Concept RefD
Deep belief network -0.38 List of Nobel laureates 0.009 Machine learning 0.32

Neocognitron -0.28 Neural development 0.009 Artificial neural network 0.31
Word embedding -0.24 Watson (computer) 0.003 Artificial intelligence 0.15

Vanishing gradient problem -0.22 Self-organization 8e-5 Algorithm 0.14
Feature learning -0.17 Language model -0.004 Statistical classification 0.13

Table 2.4. RefD scores between “deep learning” and the concepts linked from it. All
scores are calculated by RefD(‘deep learning’, concept).

2.4.3 Parameter Analysis and Case Study

Since using RefD to predict prerequisites requires setting a threshold θ, we also
investigate the relation between the threshold and the performance of prediction,
as shown in Figure 2.3. We can see that a threshold of 0.05 for RefD using TFIDF
achieves the highest average accuracy on the CrowdComp dataset while a threshold
of 0.02 works the best for Course dataset. Empirically we find that a threshold
between 0.02 and 0.1 yields a good performance for prerequisite prediction task.

We further explore the performance of RefD through a case study for the
concept “deep learning” (denoted as c′). Specifically, for any concept c linked from
c′ we calculate RefD(c′, c). Table 2.4 lists the RefD scores for different concepts
using EQUAL weighting. The concepts on the left have negative RefD scores with
high absolute values, which means that “deep learning” is a prerequisite of them.
Meanwhile concepts on the right have high positive RefD scores, which means that
“deep learning” requires knowing them first. For example, people may first need to
have some knowledge of “machine learning”, “artificial intelligence” and “algorithm”
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in order to learn “deep learning”. Also we notice that concepts in the middle
have RefD scores which are very close to 0, showing that there is no prerequisite
relations between these concepts and “deep learning”. However, since our RefD
implementation is based on Wikipedia, it might not give an accurate measure for
concepts if they have no Wikipedia articles or their articles are too short to provide
an encyclopedic coverage, such as “discriminative model” and “feature engineering”.

Please note that our Wikipedia-based implementation is computationally ef-
ficient especially after precomputing weights and references and can be easily
incorporated as a feature into existing supervised learning based methods.

2.5 Related Work
Design of data-driven methods for automatically discovering prerequisite relations
has been explored in multiple works. Established methods in educational data
mining have been developed based on the automatic analysis of the assessment data
acquired by students’ performance [28, 144, 156]. Such methods require that the
association between test items and handcrafted knowledge components is set before
hand and are not applicable for processing a large concept set. Liu et al. [100]
studied learning-dependency between knowledge units using classification where a
knowledge unit is a special text fragment containing concepts. We focus on more
general prerequisite relations among concepts. As the largest open knowledge base,
Wikipedia has also been studied to find prerequisite relations among concepts. [5,
151, 159], where both Wikipedia article contents and their link structures are
utilized. Talukdar and Cohen [151] applied a Maximum Entropy classifier to predict
prerequisite structures in Wikipedia using various features such as a random walk
with restart score and PageRank score. Using Wikipedia, Wang et al. [159] designed
a joint framework for key concept extraction and prerequisite identification to extract
concept maps from textbooks. Instead of doing feature engineering, we here propose
to measure prerequisite relations using a single metric. Yang et al. [169] proposed
Concept Graph Learning to induce relations among concepts from prerequisite
relations among courses, where the learned concept prerequisite relations are implicit
and thus can not be evaluated. Our method is more interpretable for measuring
prerequisite relations. Gordon et al. [53] proposed a information-theoretic metric
to capture concept dependencies in a scientific corpus. Their method relies on
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topic modeling techniques and requires human annotaions of latent topics to make
the result interpretable. Pan et al. [125] propose to include other features such as
video references and sentence references for learning prerequisite relations among
concepts in MOOCs.

Our work is closely related to the study of semantic relations. One related line of
research is semantic hierarchy learning, where the goal is to automatically discover
the hypernym-hyponym relation, or the “is-a” relation. The problem has been
extensively studied. Established methods are usually based on lexical patterns [60,
109, 140], distributional similarity [79, 85], semantic word embeddings [46], web
mining [47], etc. Despite being similar, prerequisite relation and “is-a” relation are
different. For example, “linear algebra” is a prerequisite of “machine learning” but
there is no hypernym-hyponym relation.

Another related research topic is knowledge graph completion. The concept
prerequisite relation could be viewed as one type of relations among entities in the
knowledge graph. The main task of knowledge graph completion is link prediction,
whose goal is to predict new relations between entities on a knowledge graph by
investigating existing relations of the graph [122]. The methods for link prediction
can be categorized into the following groups. The first group utilizes graph features
such as paths between entity pairs [81] and subgraphs [49]. The second group of
work consists of methods based on Markov random fields [71, 132]. Knowledge
graph embedding based methods [17,148] are another group of methods for the link
prediction task. These methods embed entities into a continuous low dimensional
vector space and embed relations as vectors or matrices. The current state-of-
the-art knowledge graph embedding is “translation-based” approach [16,96,161].
The assumption is that relations are “operators” used to translate entities into
other positions in the embedding space. However, the best-performing methods
for knowledge graph embedding usually require a large amount of knowledge
triples for the training process, which makes them not directly applicable for
concept prerequisite learning since there is no large-scale knowledge base for concept
prerequisites.

Measuring concept prerequisite relation is also related to the study for measuring
and categorizing semantic similarity or relatedness between linguistic items. The
methods could be categorized into two groups. The first group is taxonomy-
based methods [139], which use information from existing manually constructed
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taxonomies such as WordNet [4] and Wikitionary [172]. The other group is corpus-
based similarity measures, which leverage the contextual information of words in
the corpus. Recently corpus-based measures have been widely studied, where the
key is to model the semantic representation based on a latent space, such as Latent
Semantic Analysis (LSA) [38], Probabilistic Latent Semantic Analysis (PLSA) [65],
Latent Dirichlet Allocation (LDA) [14] and distributed word embeddings [67, 112],
or an explicit concept space, such as Explicit Semantic Analysis (ESA) [48], Salient
Semantic Analysis (SSA) [59], Temporal Semantic Analysis (TSA) [134] and Sense-
Aaware Semantic Analysis (SaSA) [167].

2.6 Summary and Discussion
This chapter studied the problem of measuring prerequisite relations among concepts
and proposed RefD, a general, light-weight, and effective metric, to capture the
relation. We presented Wikipedia-based implementations of RefD with two different
weighting strategies. Experiments on two datasets including seven domains showed
that our proposed metric outperformed existing baselines using supervised learning.

Promising future directions would be applying the framework of RefD to other
contexts such as measuring the prerequisite relations or reading orders between
papers and textbooks. In addition, RefD can be incorporated into existing super-
vised models for a more accurate measure. Chapter 4 and Chapter 5 will discuss
supervised concept prerequisite learning where RefD could be used. Also it would
be meaningful to explore ranking different prerequisites of a concept. Besides
the rich link structure we could take advantage of more content information from
Wikipedia and other resources such as textbooks and scientific papers. Chapter 3
will explore the use of course dependencies for finding concept prerequisite relations.
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Chapter 3 |
Recovering Concept Prerequi-
site Relations from University
Course Dependencies

3.1 Introduction
While it can benefit both learners and instructional designers, discovering prereq-
uisite relations among concepts is usually done manually by domain experts [12].
However, it is inefficient and expensive — and does not scale with large concept
sets. A possible solution for scaling is to develop or integrate approaches that auto-
matically infer such prerequisites from the increasing amount of digital educational
data. Available sources include knowledge bases, student assessment data, text
books, course materials, etc.

Here, we focus on the problem of recovering concept prerequisite relations
from course dependencies (denoted as CPR-Recover for short). We utilize a
similar data setting as that of [169] but instead focus on recovering an accurate and
universally shared concept graph from the observed course dependencies rather than
extrapolating the course prerequisites to unseen course pairs. We have information
and dependencies of courses collected from different universities. As shown in
Figure 3.1, courses #1-4 are from the curriculum of University A. Based on their
descriptions, course dependencies (e.g. Course #2 depends on Course #1) are used
to recover concept prerequisite relations in a shared concept graph. To address the
CPR-Recover problem, we propose an unsupervised optimization-based method
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Figure 3.1. Recovering course prerequisite relations from course dependencies.

based on the following two assumptions:

1. Causality: The dependency among courses is caused by sufficient evidence
provided by prerequisite relations among concepts representing the courses.

2. Sparsity: The prerequisites in a concept graph will be sparse, which means
the number of prerequisite relations is much smaller than the total number of
concept pairs.

Our method is designed to recover the part of concept prerequisite relations that
causes course dependencies. Take the example in Figure 3.1, the prerequisite rela-
tions (Matrix⇒ Gaussian elimination, Matrix⇒ QR decomposition) are evidences
for supporting the dependency between Course #1 and #2, thus can be recoverable
from course data. Our method has been tested on both a synthetic dataset and a
real computer science course dataset (including course names, descriptions, depen-
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dencies, etc.) collected from 11 U.S. universities. In order to make the discovered
concept prerequisite relations explicit and interpretable, we represent these courses
in terms of Wikipedia concepts. For the evaluation of concept prerequisites, we
recruit a group of graduate students to assign the ground truth labels on a filtered
subset of concept pairs. Experimental results on the two datasets both demonstrate
the superior performance of our approach.

Our main contributions include:

1. A novel method to learn concept-level prerequisite relations from course
dependencies that outperforms existing baselines on both a synthetic dataset
and a real university course dataset.

2. The first real dataset for studying and evaluating the CPR-Recover problem,
which consists of 654 unique computer science courses from 11 universities
and 3544 concept pairs with their prerequisite labels.

3.2 Problem Setup
For convenience, we will use the following notations:

• M = {1, 2, ...m} is the set of concepts where m is the number of concepts.

• N = {1, 2, ..., n} is the set of all course IDs where n is the number of unique
courses;

• xi ∈ Rm is the vector representation of the course i in concept space;

• {xi}i∈N is the set of courses;

• i 7→ j represents course i is a prerequisite of course j;

• Ω = {i 7→ j}i,j∈N is the set of prerequisite relations among courses;

• A = (as,t) is a m-by-m matrix representing prerequisite relations among
concepts, where as,t is the weight quantifying how concept t depends on
concept s.
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CPR-Recover Problem Definition. Given a set of courses {xi}i∈N with a
concept representation per course, and a set of observed course dependencies Ω,
our goal is to recover the matrix A which quantifies the strength of prerequisite
relations among concepts.

3.3 Our Approach

3.3.1 Course Representation

Since course descriptions are usually in the form of unstructured text, we first
calculate a document representation for each course. In order to get an explicit
and interpretable concept space, we choose to represent the text using Wikipedia
concepts1. We represent each course as a bag-of-concepts model. Instead of using
all words in the text, we first extract all Wikipedia concepts that are in the course
description using Wikipedia Miner [115].

After concept extraction, the course vector xi is calculated using term frequency-
inverse document frequency (tf-idf).

xi[k] = tf(ck, di) ∗ log W

df(ck)
(3.1)

where ck is the k-th concept in the concept space; di is the document for the
i-th course; tf(ck, di) is the term frequency of ck in di; W is the total number
of Wikipedia articles; and df(ck) is the document frequency for concept ck in
Wikipedia.

3.3.2 CPR-Recover Formulation

Our approach to solve the CPR-Recover problem makes two assumptions: causality
assumption and sparsity assumption. The former assumes that the prerequisite
relation between two courses is caused by sufficient evidence provided by prerequisite
relations among concepts which the two courses consist of. This serves as a bridge for
making inferences between course dependencies and concept prerequisite relations.
The latter assumption is that the prerequisite relations in a concept graph are

1Each concept corresponds to a unique English Wikipedia article.
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sparse: the number of prerequisite relations is much smaller than the total number
of concept pairs. Empirically, the frequency of a prerequisite relation existing
between a random concept pair is low, even when the concepts come from the same
domain. Since concepts are usually linked with their prerequisites, we validate our
sparsity assumption by estimating the sparsity of a concept prerequisite graph by
sampling from the Wikipedia link graph. A depth-first search under the category
“Computer science” returns a domain-specific sub-graph with about 105 nodes and
2.8× 106 edges. The graph density is ∼ 2.8× 10−4, showing the sampled graph is
quite sparse.

Based on the two assumptions, we propose to solve the CPR-Recover problem
by the following formulation:

min
A,ξ

‖vec(A)‖1 + λ · ∑
i 7→j∈Ω

ξ2
i 7→j

s.t. xTi [Ci7→j �A] xj ≥ θ − ξi 7→j, ∀i 7→ j ∈ Ω
as,t + at,s = 0, ∀s, t ∈M
−1 ≤ as,t ≤ 1, ∀s, t ∈M
as,t = 0, ∀(s, t) 6∈ K

(3.2)

where θ and λ are constant positive parameters; ξi 7→j is a slack variable for the
course pair (i, j); � is element-wise product; Ci7→j = (cs,t) is a design matrix where
cs,t ∈ {0, 1} and cs,t = 0 if xi[t] > 0 or xj[s] > 0, otherwise cs,t = 1; K is the set of
candidate concept prerequisite relations obtained from external prior knowledge.

Constraints result from the causality and sparsity assumptions, and also external
knowledge. The first constraint is based on the causality assumption. Every course
dependency i 7→ j is caused by the interaction among xi, A, and xj. Ci7→j is
incorporated to remove the contribution from the common concepts between xi
and xj to the course dependency i 7→ j. If concepts occur in both course i
and j, we assume they are not the cause of the course dependency. The second
constraint specifies that A is a skew-symmetric matrix, which means if concept
ca is a prerequisite of cb then cb is not a prerequisite of ca. The third constraint
bounds the strength of prerequisite relation in [−1, 1]. The last constraint allows
the method to incorporate external knowledge. Specifically, K here consists of all
Wikipedia concept pairs {(ca, cb)} where there is at least one hyperlink between ca
and cb. Following Talukdar et al. [151], we assume there is no prerequisite relation
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between two concepts which are not linked. Additional external knowledge can also
be inserted. For example, if some of the concept prerequisite relations is already
known from other resources such as manually-built concept graphs, this knowledge
can also be incorporated into our method as constraints.

For the objective function, the first term is the regularization term and the
second term is the empirical loss. In particular, the L1-norm on parameter A
exploits the sparsity of computed prerequisite relations, and L2-norm of the slack
variables is the loss in this setting. Two distinct variants of our approach come
from mutating the choices of these two norms. By replacing the first term by
L2-norm instead, one could show that a model proposed in [169] is a special case of
this variant. And by replacing the first term by L2-norm and the second term by
L1-norm, the resulting variant problem is the soft-margin SVM [33]. For solving
problems of moderate scale within minutes, it suffices to use standard quadratic
programming solvers. Scalable optimization techniques, such as ADMM or dual
coordinate descent, are available to handle large-scale problems. Experimental
results below validate that this choice of norms which is coherent with our model
assumption and achieves empirically good performance.

3.4 Experiments
For evaluation we conduct experiments on two datasets created by us: a synthetic
dataset and a real course dataset. To the best of our knowledge, there is no existing
dataset that contains both the course dependency data and prerequisite labels for
the underlying concept graph. All experiments are done on a Red Hat Enterprise
Linux server with 24 Intel Xeon processors @ 2.67GHz and 32GB of RAM. Mosek2

is used to solve the optimization problem.

3.4.1 Synthetic Dataset

To simulate the CPR-Recover problem, we generate a concept prerequisite graph,
pairs of course with dependencies, and documents representing the courses.

2Available online at https://www.mosek.com/
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Figure 3.2. Process of synthetic data generation. After a concept prerequisite graph is
created, prerequisite course pairs are generated by blending prerequisite concept pairs
with background words.

3.4.1.1 Process of Data Generation

The process of data generation illustrated in Figure 3.2 consists of the following
two steps:

1. (Concept prerequisite graph generation) We follow the Erdős-Rényi model to
generate the underlying concept prerequisite graph, i.e., generating a random
graph given the number of concepts (nodes) m and the probability p for
creating a prerequisite relation (edge) between two concepts. Note every edge
is set to be directed from a vertex to another with a larger concept ID. This
step results in a directed graph G with m nodes and |E| edges.

2. (Prerequisite course pairs generation) Next we generate k pairs of courses
with prerequisite relations. Two assumptions are made: (i) The document
representing the course consists of both concepts and background words.
Prerequisite relations that only exist among concepts and background words
are considered as noise. (ii) The prerequisite relation between two documents
is consistent with the prerequisite relation between concepts in the two
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G m |E| |V | p l lc

GS 100 100 100 0.01 10 2
GL 500 2463 500

Table 3.1. Statistics of two synthetic datasets.

documents. Specifically, given the document length l, the number of concepts
in a document lc, the vocabulary of background words V , we generate a pair
of documents (di, dj) representing i 7→ j with the following three steps:

(a) Randomly sample lc edges from the concept prerequisite graph G gener-
ated from previous step.

(b) For every edge cs 7→ ct from the sampled lc edges, add cs to di, ct to dj.

(c) Randomly sample l − lc background words from V and add them to di.
Conduct a similar random sampling to add background words to dj.

For our experiment, two concept prerequisite graphs, GS and GL, with different
sizes are generated to test performance at different scales. A detailed description
of the two experiment settings is shown in Table 3.1. The vocabulary size of
background words is set equal to the number of nodes in G. The edge creation
probability p is set to be 0.01 to enforce the sparsity on the concept graph. The
document length l is set to 10 and each document consists of 2 concepts. We
now explore the relation between the method performance and the number of
course prerequisite pairs k. Specifically consider the following questions: will the
concept prerequisite matrix A be better recovered if we obtain more pairs of course
prerequisites? How will our method perform compared to other baselines?

3.4.1.2 Baselines and Evaluation Metrics – Synthetic Data

For comparison we use the two following baselines, one a previous method —
CGL.Class [169] — and the other a naive method — Freq which for the concept
pair (cs, ct) calculates as,t as the number of times the pair “co-occurs” in course
prerequisite pairs. For i 7→ j, (cs, ct) “co-occurs” if xi[s] > 0 and xj[t] > 0.

Precision at K (P@K ) is calculated for the evaluation of A. We first sort the
elements of A in a descending order and get an ordered list lA = {as,t}. P@K
is calculated as

∑K

i=1 rel(i)
K

, where rel(·) is binary indicator function; rel(i) = 1 if
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Figure 3.3. Results on two synthetic datasets.

the concept pair (cs, ct) corresponding to the i-th element in lA belongs to E. In
our experiment, we set K = |E| because ideally the top |E| elements of A should
correspond to all |E| edges in the generated concept prerequisite graph.

3.4.1.3 Results – Synthetic Data

Experimental results on the two synthetic datasets are shown in Figure 3.3. For
each method P@|E| is calculated with a given number of course prerequisite pairs
k. For the experiment setting GS, k is chosen from [100, 200, ..., 1000]. And for GL,
k is chosen from [2500, 5000, ..., 25000]. We can see that results for GS and GL are
consistent and show that: (i) As k increases, the performance of different methods
keeps improving; (ii) Our method outperforms both CGL.Class and Freq for every
choice of k. A closer look at the performances of the three methods shows that
the difference is decreasing when k becomes small enough (≈ |E|) or large enough
(≈ 10|E|). While for the former case there are not enough observations to make
correct inferences, for the latter case all three methods are able to recover most
of the concept prerequisites from the sufficient observed course prerequisites. In
addition, we can see that when k ≈ 6|E| our method can recover almost all edges
in G while the other two methods perform significantly worse. We explain this
by noting that our method is designed to exploit the sparsity assumption for the
concept prerequisite graph G. In contrast, CGL.Class and Freq do not.
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3.4.2 University Course Dataset

In addition to the synthetic dataset, we also create a real course dataset based
on data collected from 11 U.S universities, (Carnegie Mellon University, Stanford
University, the Massachusetts Institute of Technology, Princeton University, the
California Institute of Technology, Purdue University, University of Maryland,
Michigan State University, Pennsylvania State University, University of Illinois, and
University of Iowa) all with a focus on computer science or computer science like
departments (CS). We developed a Web scraper to extract the course information
from the online course catalogs of these universities. Besides the basic information
such as course ID, name, and description, the course catalogs also provide course
prerequisite information. For example, “CS 311 Data Structures and Algorithms”
is a prerequisite for “CS 422 Data mining”. Our focus on courses in the computer
science is two-fold. We have domain expertise in that area and focusing on only
one domain will make the ground truth acquisition easier and more realistic. After
collecting the course descriptions, we apply Wikipedia Miner [115] to extract
Wikipedia concepts.

In total from the 11 universities there were 654 unique CS courses (both under-
grad and graduate level), 639 pairs of courses with prerequisite relations, and 569
Wikipedia concepts. And the average number of concepts per course was 4.73. The
dataset is available at https://github.com/harrylclc/eaai17-cpr-recover.

3.4.2.1 Data Labeling

To accurately label for a given concept pair (cs, ct) whether cs is an actual prerequi-
site of ct requires domain knowledge. It can not be done by setting tasks on existing
major crowdsourcing platforms such as Amazon Mechanical Turk where workers
are not guaranteed to have the knowledge and expertise. As such for labeling we
recruited 13 graduate students with CS backgrounds. Instead of labeling all pairs
of concepts in the concept space, they only needed to label the set of candidate
concept pairs P = {(cs, ct)|∃i 7→ j ∈ Ω, s.t. xi[s] > 0 and xj[t] > 0}, i.e., only the
concept pairs that “co-occur” in course prerequisite pairs. Note that for a concept
pair (cs, ct) /∈ P , as,t would be unchanged and stay at zero during the optimization
process.

In the course dataset, from 861 course prerequisites we get |P | = 3544. For each
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candidate pair (cs, ct), each student annotator decides whether cs is a prerequisite
of ct and gives a binary label. The labeling task is assigned to the 13 annotators in
a way that each concept pair can get labels from three annotators. The majority
vote for the three labels is treated as the ground truth. Based on our setting of the
labeling process, Fleiss’ kappa κ [44] is used to assess the reliability of agreement
between annotators. Note that κ = 1 if annotators are in complete agreement and
κ ≤ 0 if the observed agreement among the raters is no more than what would
be expected by chance. For the labels we collected, κ = 0.42, which shows a level
of moderate agreement. With no existing labeled concept prerequisite dataset
available, such data, though not perfect, is necessary for evaluation. Finally, from
the 3544 candidate concept pairs we get 1008 pairs of concepts with prerequisite
relations, denoted as Ptrue.

3.4.2.2 Baselines and Evaluation Metrics – University Course Data

Besides CGL.Class and Freq, our method is also compared with the following two
baselines. RefD [90]: A link-based metric for measuring prerequisite relations
among Wikipedia concepts. For each (cs, ct) ∈ P , set as,t = RefD(ct, cs). Note
that instead of utilizing course dependencies this method requires the knowledge
of the whole Wikipedia graph. We compare with this method in order to explore
the performance difference between our method and methods based on external
knowledge bases. Random: For each (cs, ct) ∈ P , randomly choose as,t from {0, 1}
with equal probability. Each time the probability of discovering a true prerequisite
pair is equal to the ratio of prerequisite pairs Ptrue to all candidate pairs P , which
is |Ptrue|/|P |.

Given the size of concept graph and the limited number of observed course
prerequisites in the dataset, the method is expected to recover only a part of all
prerequisite concept pairs. Thus we focus on the Top-K precision performance.
Specifically, for the evaluation of A, we use precision at K (P@K) and average
precision at K (AP@K). Given the ranked list of scores for each candidate pair,
lP = {as,t}(cs,ct)∈P , P@K and AP@K are calculated by

P@K =
∑K
i=1 rel(i)
K

(3.3)

AP@K =
∑K
i=1 P@i · rel(i)∑K

i=1 rel(i)
(3.4)
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Methods P@50 P@100 AP@50 AP@100
Our method 0.54 0.50 0.60 0.57
CGL.Class 0.46 0.42 0.56 0.51

Freq 0.44 0.46 0.37 0.41
RefD 0.52 0.55 0.42 0.49

Random 0.28

Table 3.2. Results on the course dataset.
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Figure 3.4. Results using different numbers of pairs (k) of course dependencies. ∗
indicates that with a given k our method significantly outperforms other two methods
(p < 0.05).

where rel(·) is binary indicator function; rel(i) = 1 if the concept pair (cs, ct)
corresponding to the i-th element in lP belongs to Ptrue. In our experiments, we
compare different methods with K equal to 50 and 100.

3.4.2.3 Results – University Course Data

Note that there are two parameters θ and λ for our method. We perform a grid
search on θ ∈ {4, 8, 12, 16, 20, 24} and λ ∈ {2−13, 2−12, ..., 2−6, 2−5} to find the best
parameters. We find that the parameter combination (θ = 8, λ = 2−8) yields the best
AP@100. Table 3.2 lists the experiment results of different methods, from which we
have the following findings: Our method outperforms all baselines in terms of P@50
and AP@K. As for P@100, our method performs better than CGL.Class, Freq, and
Random, only worse than RefD. Such results are encouraging because, as previously
mentioned, RefD utilizes the link structure of the entire Wikipedia, which contains
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much more information than the collected course prerequisite dataset. In other
words, if we only compare methods which are strictly based on the CPR-Recover
problem setting, our method is the best one w.r.t. both P@K and AP@K.

Our method is also evaluated in a similar setting to the one used for the
synthetic dataset, where our method is compared with CGL.Class and Freq using
different number of course dependencies (k). Since in total only |Ω| = 639 course
dependencies are available, k is chosen from [100, 200, ..., 600]. For each k, we
randomly sample k dependencies from Ω and compare different methods. We
repeat such process 40 times and calculate the average performance. Results using
different k are shown in Figure 3.4. While different methods perform similarly when
k is small, the advantage of our method to other baselines becomes statistically
significant (p < 0.05) given sufficient k, specifically when k ≥ 200 for P@50 and
k ≥ 400 for P@100.

To analyze the human performance for identifying concept prerequisites, we
evaluate each of the 13 student annotators based on the ground truth Ptrue (i.e.,
the consensus). The precision and F-score for identifying concept prerequisites
by student annotators are 0.75±0.13 (mean± SD) and 0.75±0.08. Because they
have previously acquired background knowledge, it is not surprising that the
precision is much higher than the top-K precision of all methods in Table 3.2.
From experimental results on synthetic dataset, we have noticed that our method
benefits more from the increasing number of course dependencies than baselines do.
If a sufficient number of course dependencies is given, the difference between the
performances of our method and that of humans is expected to become smaller.

3.4.2.4 Case Study

We further investigate our method by studying examples of prerequisite concept
pairs recovered. Table 3.3 lists examples of both true prerequisite pairs (TPP) and
false prerequisite pairs (FPP), based on the ground truth labels collected. While we
can see from the TPP that we can recover some of the concept prerequisites based
on course dependencies, the FPP illustrate errors. Looking closely at the FPP, we
hypothesize the errors are due to: (i) The performance of concept extraction is not
that good. For example, the Wikipedia Miner extracts Mathematical optimization
from the course description “...basic program analysis and optimization...” rather
than find the correct concept Program optimization. Program optimization requires
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Pairs (cs, ct)

TPP

(Computer programming, System programming)
(Algorithm, Computer graphics)
(Probability, Machine learning)
(Mathematical optimization, Machine learning)
(Parallel computing, Parallel algorithm)
(Computer graphics, Computer animation)
(Computer science, Programming language)
(Computer programming, Operating system)
(Computer, Computer network)
(Data structure, Software engineering)

FPP

(Computer science, Mathematical optimization)
(Data structure, Analysis of algorithms)
(Dynamic programming, Algorithm)
(Computer software, Database)
(Graph theory, Computer vision)

Table 3.3. Examples of prerequisite concept pairs we recovered, which are categorized
as true prerequisite pairs (TPP) and false prerequisite pairs (FPP). Note cs is expected
to be a prerequisite of ct.

Computer science, but Mathematical optimization does not. (ii) A Wikipedia
concept can have different levels of interpretation, which will affect the choice for
data labeling. For example, both Database and DBMS correspond to the same
Wikipedia concept Database. Computer software is a prerequisite for DBMS but
not for the general Database. (iii) For our dataset, concept pairs such as (Dynamic
programming, Algorithm) and (Data structure, Analysis of algorithms) co-occur
many times in course prerequisites. Such pairs are more likely to be recovered by
data-driven methods including ours and the compared baselines.

3.5 Related Work
To the best of our knowledge, the problem of recovering concept prerequisite
relations from course dependencies has not been systematically studied. However,
our work is closely related to the design of data-driven methods for automatic
prerequisite discovery. Besides the works that have already been discussed in
Section 2.5, another closely related work is [169]. For automatic curriculum planing,
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Yang et al. [169] proposed a supervised framework to infer course prerequisites by
constructing a latent concept graph to support prediction. Such a data setting is
also utilized in our work. In comparison, their empirical efforts focused more on
extrapolating the observed course prerequisites to unseen pairs, while we focus on
recovering a universally shared concept graph. In their paper, the latent concept
graph based on their approach — not yet formally evaluated as remarked in [169] —
is also empirically evaluated with our method in the two experiments.

3.6 Summary
Through this chapter, we explored how to automatically discover concept prereq-
uisite relations, which can further be utilized by many educational applications.
Specifically, we proposed an effective data-driven method for recovering concept
prerequisite relations from university course dependencies, the CPR-Recover prob-
lem. Our method was evaluated on a synthetic dataset and real course datasets
derived from computer science or related course listings at 11 US universities and
significatly outperformed existing baselines. To our knowledge, this is the first real
dataset for the CPR-Recover problem.
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Chapter 4 |
Investigating Active Learning for
Concept Prerequisite Learning

4.1 Introduction
Although there has been research on learning prerequisites [90,99,125,144,151,156,
159], the lack of large scale prerequisite labels remains a major obstacle for effective
machine learning-based solutions. A possible solution for learning a good classifier
given limited labeled instances is active learning [9, 30, 145], since it is designed to
learn classifiers with significantly fewer labels by actively directing the query to the
most “valuable” examples. As such, active learning methods could could also be
applied to solving the current challenges of concept prerequisite learning.

To our knowledge, active learning has not been applied to the concept pre-
requisite learning problem. This chapter introduces the first attempt of applying
active learning to the concept prerequisite learning problem. We investigate three
families of query selection strategies by comparing their effectiveness on reducing
the amount of training data. The first are informativeness-based methods such as
uncertainty sampling [86] and query-by-committee [146]. The second are methods
which take both informativeness and representativeness into account. The third
are diversity-based strategies which aim to cover the feature space as broadly as
possible. For classification, we propose a novel set of features for representing
concept pairs and choose from four widely used classifiers the most suitable one for
conducting active learning experiments. Our experiment results show a clear win
for query-by-committee over other compared query strategies and show that active
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learning can be used to reduce the amount of training data required for concept
prerequisite learning.

4.2 Pool-based Active Learning
Pool-based sampling [87] is a typical active learning scenario in which one maintains
a labeled set Dl and an unlabeled set Du. In particular, we let Du ∪ Dl = D =
{1, . . . , n} and Du ∩Dl = ∅. For i ∈ {1, . . . , n}, we use xi ∈ Rd to denote a feature
vector representing the i-th instance, and yi ∈ {−1,+1} to denote its ground truth
class label. At each round, one or more instances are selected from Du whose
label(s) are then requested, and the labeled instance(s) are then moved to Dl.
Typically instances are queried in a prioritized way such that one can obtain good
classifiers trained with a substantially smaller set Dl. We focus on the pool-based
sampling setting where queries are selected in serial, i.e., one at a time. Algorithm 1
presents the typical setting of serial pool-based active learning.

Algorithm 1 Pseudocode for pool-based active learning.
Input:
D ← {1, 2, ..., n} % a data set of n instances

Initialize:
Dl ← {s1, s2, ..., sk} % initial labeled set with k seeds
Du ← D\Dl % initial unlabeled set

while Du 6= ∅ do
Select s∗ from Du % according to a query strategy
Query the label ys∗ for the selected instance s∗
Dl ← Dl ∪ {s∗}
Du ← Du\{s∗}

end while

4.2.1 Query Strategies

The key component of active learning is the design of an effective criterion for
selecting the most “valuable” instance to query, which is often referred to as query
strategy. We use s∗ to refer to the selected instance by the strategy. In general,
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different strategies follow a greedy framework:

s∗ = argmax
s∈Du

min
y∈{−1,1}

f(s; y,Dl), (4.1)

where f(s; y,Dl) ∈ R is a scoring function to measure the risks of choosing y as
the label for xs ∈ Du given an existing labeled set Dl.

We investigate four commonly used query strategies: uncertainty sampling [86],
query-by-committee [146], QUIRE [68], and diversity sampling. These strategies
are designed based on different assumptions: The first two selection strategies
are based on the informativeness of the instance estimated by classifiers; QUIRE
is based on the combination of informativeness and representativeness; Diversity
sampling is based on the diversity in the feature space. Although being different,
we show that under the binary classification setting, they can all be reformulated
as Eq. (4.1).
Uncertainty Sampling selects the instance which it is least certain how to label.
We choose to study one popular uncertainty-based sampling variant, the least
confident. Subject to Eq. (4.1), the resulting approach is to let

f(s; y,Dl) = 1− P∆(Dl)(ys = y|xs), (4.2)

where P∆(Dl)(ys = y|xs) is a conditional probability which is estimated from a
probabilistic classification model ∆ trained on {(xi, yi) | ∀i ∈ Dl}.
Query-By-Committee maintains a committee of models trained on labeled data,
C(Dl) = {g(1), ..., g(C)}. It aims to reduce the size of version space. Specifically, it
selects the unlabeled instance about which committee members disagree the most
based on their predictions. Subject to Eq. (4.1), the resulting approach is to let

f(s; y,Dl) =
∑C

k=1 1[y 6= g(k)(xs)], (4.3)

where g(k)(xs) ∈ {−1, 1} is the predicted label of xs using the classifier g(k).
QUIRE aims to measure and combine the two types of query selection crite-
ria, informativeness and representativeness, using a comprehensive max-margin
framework. Subject to Eq. (4.1), the resulting approach is to let

f(s; y,Dl) = (Lu,lyl + Lu,sy)TL−1
u,u(Lu,lyl + Lu,sy)− 2yLs,lyl − Ls,s, (4.4)
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where L = (K + λI)−1 and K is the kernel matrix of size n × n and f(s; y,Dl)
is equal to the negative margin if ys = y up to a constant. Due to limited space,
please refer to [68] (pp. 1938–1940) for their detailed notations.
Diversity Sampling aims to select instances that cover as much of the feature
space as possible. It selects the unlabeled instance with the lowest average cosine
similarity between the instance’s feature vector and those of the instances in the
current training labeled dataset. Subject to Eq. (4.1), the resulting approach is to
let

f(s; y,Dl) =
∑
i∈Dl

1− cos(xs,xi) (4.5)

where cos(xi,xj) = xi·xj
|xi||xj | is the cosine similarity function. Note label y is not

considered in this method.

4.3 Experimental Design
For experiments, we apply the previously mentioned active learning algorithms
to concept prerequisite learning problem [90]. Given a pair of concepts (A, B), we
predict whether or not A is a prerequisite of B, which is a binary classification
problem. Here, cases where B is a prerequisite of A and where no prerequisite
relation exists are both considered negative.

4.3.1 Dataset

We use the Wiki concept map dataset [159] which is collected from textbooks on four
different educational domains. For each domain, the dataset consists of prerequisite
pairs in the concept map. In the preprocessing stage, we validate whether each
of the prerequisite relations in the dataset satisfies the required properties of a
strict partial order (i.e., transitivity and irreflexivity) and ask domain experts to
manually correct their labels if needed. We also expand the dataset by using the
irreflexive and transitive properties: (i) add (B, A) as a negative sample if (A, B)
is a positive sample; (ii) add (A, C) as a positive sample if both (A, B) and (B, C)
are positive samples. Table 4.1 summarizes the statistics of the our final processed
dataset.
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Domain # Concepts # Pairs # Prerequisites

Data Mining 120 826 292
Geometry 89 1681 524
Physics 153 1962 487
Precalculus 224 2060 699

Table 4.1. Dataset statistics.

4.3.2 Feature Description

For each concept pair (A,B), we calculate two types of features from information
retrieval and natural language processing: graph-based and text-based features.
Note that for all features, we use a Wikipedia dump of Oct. 2016.

4.3.2.1 Graph-based Features (GF)

The first type of feature is designed to utilize the link structure of Wikipedia. For
convenience, we use the following notations: In(A) is the set of concepts that link
to A; Out(A) is the set of concepts which A links to; C = {c1, ..., cN} is the concept
space, i.e. all concepts in Wikipedia. Specifically, different types of graph-based
features are:

• In/Out Degree. (GF #1-#4) The in/out degree of A/B.

• Common Neighbors. (GF #5) The number of common neighbors of A and
B, i.e. |Out(A) ∩Out(B)|.

• # Links. (GF #6-#7) The number of times A/B links to B/A. The link
structure within Wikipedia can be used as a proxy for prerequisite relations.
The intuition is that a concept is usually linked to its prerequisites.

• Link Proportion. (GF #8-#9) The proportion of pages that link to A/B also
link to B/A, i.e. |In(A)∩In(B)|

|In(A)| and |In(A)∩In(B)|
|In(B)| .

• NGD. (GF #10) The Normalized Google Distance [164] between A and B.
Specifically,

NGD(A,B) = max(log |In(A)|, log |In(B)|)− log |In(A) ∩ In(B)|
logN −min(log |In(A)|, log |In(B)|) (4.6)
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• PMI. (GF #11) The Pointwise Mutual Information relatedness between the
incoming links of A and B. [137]

PMI(A,B) = log N · |In(A) ∩ In(B)|
|In(A)| · |In(B)| (4.7)

• RefD. (GF #12) A metric to measure how differently A and B’s related
concepts link to each other. Proposed by [90], RefD has been used as a proxy
to measure concept prerequisite relations.

RefD(A,B) =
∑N
i=1 r(ci, B) · w(ci, A)∑N

i=1w(ci, A)
−

∑N
i=1 r(ci, A) · w(ci, B)∑N

i=1w(ci, B)
(4.8)

where w(ci, A) weights the importance of ci to A; and r(ci, A) is an indicator
showing whether ci links to A.

• PageRank. (GF #13) The difference between A andB’s PageRank scores [124].
The PageRank score, based on the link analysis, can be used to estimate the
importance of concepts.

• HITS. (GF #14-#15) The difference between A and B’s hub scores and the
difference between their authority scores [78]. Similar to PageRank, authority
and hub scores are used as proxies for concept importance.

4.3.2.2 Text-based Features (TF)

The second type of feature is designed to utilize textual content in the Wikipedia
page. Note we have trained a topic model [14] (#topics=300) on the Wiki corpus.
We have also trained a word2vec [112] (size=300) model on the same corpus
with each concept treated as an individual token. Specifically, different types of
text-based features are:

• 1st Sent. (TF #1-#2) Whether A/B appears in the first sentence of B/A.
The first sentence of a Wikipedia article is usually the definition of the
concept and the concepts mentioned in the sentence are more likely to be a
prerequisite.

• In Title. (TF #3) Whether A appears in B’s title. For example, “machine
learning” is contained in “Supervised machine learning”.
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• Title Jaccard. (TF #4) The Jaccard similarity between A and B’s titles.

• Length. (TF #5-#6) The number of words of A/B’s content. This might
serve as a proxy for complexity level and popularity of the concept.

• Mention. (TF #7-#8) The number of times A/B are mentioned in the content
of B/A. The intuition is that the important prerequisites of a concept might
be mentioned many times in its content.

• NP. (TF #9-#11) The number of noun phrases in A/B’s content; The number
of common noun phrases. If the concept is very general, its content tends to
have more noun phrases.

• Tf-idf Sim. (TF #12) The cosine similarity between Tf-idf vectors for A and
B’s first paragraphs.

• Word2vec Sim. (TF #13) The cosine similarity between vectors of A and
B trained by word2vec. Both word2vec and tf-idf similarities are measures
for semantic relatedness, which is needed because usually two concepts with
prerequisite relation are semantically related.

• LDA Entropy. (TF #14-#15) The Shannon entropy of the LDA vector of
A/B.

H(A) = −
T∑
i

pAi log pAi (4.9)

where pA is A’s LDA vector, i.e., the distribution over T topics. More
advanced concepts usually focus on fewer topics, thus leading to a lower LDA
entropy.

• LDA Cross Entropy. (TF #16-#17) The cross entropy between the LDA
vector of A/B and B/A. Gordon et al. [53] propose to use this feature to
capture concept dependencies in a scientific corpus.

H(A;B) = H(A) +DKL(A||B) (4.10)

where H(A) is the entropy of A’s LDA vector, and DKL(A||B) is the Kullback-
Leibler divergence between A and B’s LDA vectors.
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Classifier Metric Data Mining Geometry Physics Precalulus

NB

P 71.5 84.4 54.3 85.7
R 28.5 44.3 71.9 66.9
F1 37.8 58.1 61.6 75.0
AUC 81.4 87.1 85.5 93.2

LR

P 65.8 71.3 58.0 81.7
R 77.4 81.3 78.8 88.4
F1 71.1 75.8 66.8 84.8
AUC 85.9 91.6 89.2 95.4

SVM

P 73.7 82.8 77.9 86.7
R 64.7 69.9 50.3 81.4
F1 68.6 75.5 61.1 83.9
AUC 85.0 91.3 88.8 95.1

RF

P 80.7 95.0 85.2 90.2
R 73.3 84.7 59.3 87.1
F1 76.7 89.5 69.9 88.6
AUC 92.2 97.8 93.9 97.5

Table 4.2. Results (%) for concept prerequisite relation classification.

4.4 Experimental Results

4.4.1 Evaluation of Classification

Before investigating the performance of active learning, we first evaluate concept
prerequisite learning under the traditional binary classification setting. In our
experiments, we employ four widely used binary classifiers: Naïve Bayes (NB),
Logistic Regression (LR), Support Vector Machine (SVM) [33], and Random Forest
(RF) [18]. Specifically, we set C = 1.0 for LR, use a linear kernel for SVM, and use
200 trees for RF. For each dataset, we apply 5-fold cross validation and report the
average precision (P ), recall (R), F1-score (F1) and Area under the ROC curve
(AUC).

As shown in Table 4.2, the classification results vary by different methods.
Overall, Naïve Bayes performs the worst in terms of both F1 and AUC, which is
due to the fact that the strong independence assumption does not hold for our
designed feature set. For example, the number of noun phrases might be correlated
with the number of words; PageRank and HITS scores are not independent either.

42



Data Mining Geometry Physics Precalculus

Authority diff PageRank diff PageRank diff PageRank diff
LDA entropy of A In degree of A RefD Authority diff
PageRank diff Out degree of A # mentions of A in B RefD
In degree of A RefD In degree of B # mentions of A in B

RefD # mentions of A in B Authority diff Out degree of A
LDA entropy of B LDA entropy of A Link proportion of B A in B’s 1st sentence
In degree of B A in B’s 1st sentence Out degree of A In degree of A

LDA cross entropy (A;B) Length of A In degree of A Hub diff
Link proportion of A # NPs in A LDA entropy of A # NPs in A

LDA cross entropy (B;A) # mentions of B in A # NPs in B # mentions of A in B

Table 4.3. Top 10 important features for each domain.

As linear classification models, LR and SVM lead to similar F1 and AUC while the
former has higher recall and the latter has higher precision. Among four methods,
Random Forest outperforms other three across all four domains, by 5.6%, 13.7%,
3.1%, and 3.8% respectively w.r.t. F1 and 6.3%, 6.1%, 4.7%, and 2.1% w.r.t.
AUC. This might be because, compared with a linear combination of features for
classification, the procedure of RF (the bagging and random selection of feature
set) is more suitable for capturing the relation between the proposed feature set
and concept prerequisite relations. We use RF in the following experiments as the
classification model.

4.4.2 Feature Analysis

We also conduct a feature analysis in order to gain more insights on the proposed
feature set. Table 4.3 lists top 10 features for each domain. Since Random Forest is
used, the feature importance is calculated by “mean decrease impurity”. It is defined
as the total decrease in node impurity, weighted by the probability of reaching
that node, averaged over all trees of the ensemble. From Table 4.3, we can observe
the following: (i) While the ranking of features is different across four domains,
there are many common important features such as PageRank, HITS’s authority
score, RefD, etc; (ii) Among top features, there are more graph-based features
than text-based features. This might be because current text-based features are
still very simple and more effective text features are yet to be explored. Several
possible choices include lexico-syntactic patterns [60], structural features [125],
etc. (iii) Top text-based features are LDA entropy, LDA cross entropy, Mention,
and NP. Similarity-based features such as Tf-idf and Word2vec similarities are
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not as important; (iv) Top graph-based features are PageRank, authority score,
RefD, in/out degree, and link proportion. Other graph features such as common
neighbors, NGD, and PMI are less important. From observation (iii) and (iv) we
find that symmetric pairwise features such as similarity and PMI are not important
in current in-domain classification setting. This can be explained by noticing that
the motivation of designing these features is to add constraints on the semantic
relatedness, which is usually already satisfied in the in-domain setting. We expect
such features to be more important in a cross-domain classification setting, where
the concept space is much larger and more diverse.

4.4.3 Evaluation of Active Learning

4.4.3.1 Settings

We follow the typical evaluation protocol of pool-based active learning. We first
randomly split a dataset into a training set D and a test set Dtest with a ratio of
2:1. Then we randomly select 20 samples from the training set as the initial query
set Q and compute its closure Dl. Meanwhile, we set Du = D\Dl. In each iteration,
we pick an unlabeled instance from Du to query for its label, update the label
set Dl, and re-train a classification model on the updated Dl ∩ D. The re-trained
classification model is then evaluated on Dtest. In all experiments, we use a random
forests classifier [18] with 200 trees as the classification model. We use Area under
the ROC curve (AUC) as the evaluation metric. Taking into account the effects of
randomness subject to different initializations, we continue the above experimental
process for each method repeatedly with 300 preselected distinct random seeds.
Their average scores and confidence intervals (α = 0.05) are reported. We compare
the following five query strategies, most of which have been introduced in previous
sections:

• Random: randomly selecting an instance to query. We choose this as the
baseline for comparison.

• LC: least confident sampling, a widely used uncertainty sampling variant. We
use a logistic regression model to estimate the posterior probabilities.

• QBC: query-by-committee algorithm. We apply query-by-bagging [108] and
use a committee of three decision trees.
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Figure 4.1. Comparison of different query strategies for concept prerequisite classifica-
tion.

• QUIRE: a strategy for querying informative and representative examples. We
follow the authors’ experimental approach to use an RBF kernel and set the
parameter λ = 1.

• Diversity: a strategy for selecting the unlabeled instance that is as diverse as
possible in the feature space of current labeled set.

4.4.3.2 Results

Figure 4.1 shows the AUC results of different query strategies for concept prerequisite
learning. For each case, we present the average values and 95% confidence intervals
of repeated 300 trials with different train/test splits. From the figure we have the
following observations:

First, comparing results on four domains, we can find different query strategies
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have relatively consistent learning curves, with the only exception of LC on the
Precalculus domain. This is possibly caused by that the number of concept in Pre-
calculus is much larger than other domains and the logistic regression classifier used
by LC failed to give an accurate uncertainty estimation. Second, when comparing
different strategies with the Random baseline, we find: (i) Informativeness-based
methods (least confident sampling and query-by-committee) show substantial im-
provement over random; QBC is constantly outperforming other query strategies
on all domains, which shows the advantage of using ensemble method to estimate
uncertainty over the single linear classification model as used by LC. This again
suggests that decision tree-based classifiers are more effective given the proposed
feature set. (ii) Diversity-sampling is not significantly different from random, which
suggests that choosing the instance as diverse as possible in the proposed feature
space is not effective. (iii) QUIRE performs worse than random, especially during
the early stage of active learning. It is also worth mentioning that QUIRE requires
significantly longer time for choosing instances because of calculating the inverse
and determinant of large matrices. In addition, for our datasets, by empirically
tuning the RBF parameter γ for the best, we still did not find any advantages of
QUIRE over LC or QBC. This might be because the used RBF kernel, on which
QUIRE’s performance is critically dependent, does not really suit our provided
features.

To sum up, we find that informativeness-based query strategies, especially
query-by-committee, is more effective for concept prerequisite learning given the
proposed feature set. Different active learning strategies can be used to reduce
the amount of training data required to get an expected AUC score for concept
prerequisite learning.

4.5 Summary and Discussion
We made several contributions to concept prerequisite learning. In order to deal
with the lack of large scale labels which makes problematic supervised learning for
concept prerequisite learning, we investigated the applicability of active learning.
Our active learning experiments for comparing different query strategies found that
query-by-committee constantly outperforms other methods including uncertainty
sampling, QUIRE, and diversity sampling. We proposed a novel set of features for
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concept pair representation tailored for the concept prerequisite learning problem.
The top features identified by the feature importance analysis hopefully will be
helpful for other supervised prerequisite learning methods.

Built upon the study described in this chapter, Chapter 5 will explore active
learning query strategies better tailored to the concept prerequisite learning problem.
In the typical setup of active learning, the dependency among labeled or unlabeled
instances is not considered. However, since the prerequisite relation is both transitive
and irreflexive, then when an unlabeled instance is labeled, there could be other
unlabeled instances whose labels can be deduced by applying logical reasoning with
the two properties. Query strategies that can take such properties into account will
make active learning more effective.

It would be useful to investigate in more detail the semantic representation of
concept pairs for prerequisite learning and to design more complex features such
as complexity level features, structural features, etc. and see their effect on the
classification performance.
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Chapter 5 |
Active Learning of Strict Par-
tial Orders: A Case Study on
Concept Prerequisite Relations

5.1 Introduction
Pool-based active learning is a learning framework where the learning algorithm is
allowed to access a set of unlabeled examples and ask for the labels of any of these
examples [9, 30,145]. Its goal is to learn a good classifier with significantly fewer
labels by actively directing the queries to the most “valuable” examples. In a typical
setup of active learning, the label dependency among labeled or unlabeled examples
is not considered. But data and knowledge in the real world are often embodied
with prior relational structures. Taking into consideration those structures in
building machine learning solutions can be necessary and crucial [50].

The goal of this chapter is to investigate the query strategies in active learning of
a strict partial order, namely, when the ground-truth labels of examples constitute
an irreflexive and transitive relation. In this chapter, we develop efficient and
effective algorithms extending popular query strategies used in active learning to
work with such relational data. We study the following problem in the active
learning context:

Definition 5 (Active Learning of Strict Orders). Given a finite set V , a strict
order on V is a type of irreflexive and transitive (pairwise) relation. Such a strict
order is represented by a subset G ⊆ V × V . Given an unknown strict order G, an
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oracle W that returns W (u, v) = −1 + 2 · 1[(u, v) ∈ G] ∈ {−1, 1}, and a feature
extractor F : V × V 7→ Rd, find h : Rd 7→ {−1, 1} from a hypothesis class H that
predicts whether or not (u, v) ∈ G for each pair (u, v) ∈ V × V and u 6= v (using
h(F(u, v))) by querying W a finite number of (u, v) pairs from V × V .

Our main focus is to develop reasonable query strategies in active learning
of a strict order exploiting both the knowledge from (non-consistent) classifiers
trained on a limited number of labeled examples and the deductive structures
among pairwise relations. Our work also has a particular focus on partial orders. If
the strict order is total, a large school called “learning to rank” has studied this
topic [20,102], some of which are under the active learning setting [39,103]. Learning
to rank relies on binary classifiers or probabilistic models that are consistent with the
rule of a total order. Such approaches are however limited in a sense to principally
modeling a partial order: a classifier consistent with a total order will always have
a non-zero lower bound of error rate, if the ground-truth is a partial order but not
a total order.

In our active learning problem, incorporating the deductive relations of a
strict order in soliciting examples to be labeled is non-trivial and important. The
challenges motivating us to pursue this direction can be explained in three folds:
First, any example whose label can be deterministically reasoned from a labeled
set by using the properties of strict orders does not need further manual labeling
or statistical prediction. Second, probabilistic inference of labels based on the
independence hypothesis, as is done in the conventional classifier training, is not
proper any more because the deductive relations make the labels of examples
dependent on each other. Third, in order to quantify how valuable an example is for
querying, one has to combine uncertainty and logic to build proper representations.
Sound and efficient heuristics with empirical success are to be explored.

One related active learning work that deals with a similar setting to ours is [138],
whereas equivalence relations are considered instead. Particularly, they made
several crude approximations in order to expedite the expected error calculation to
a computational tractable level. We approach the design of query strategies from a
different perspective while keeping efficiency as one of our central concerns.

To empirically study the proposed active learning algorithm, we apply it to
concept prerequisite learning problem [90, 151], where the goal is to predict whether
a concept A is a prerequisite of a concept B given the pair (A,B). Although there
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have been some research efforts towards learning prerequisites [90, 99, 125,144,151,
156,159], the mathematical nature of the prerequisite relation as strict partial orders
has not been investigated. In addition, one obstacle for effective learning-based
solutions to this problem is the lack of large scale prerequisite labels. Liang et
al. [93] applied standard active learning to this problem without utilizing relation
properties of prerequisites. Active learning methods tailored for strict partial orders
provide a good opportunity to tackle the current challenges of concept prerequisite
learning.

Our main contributions are summarized as follows: First, we propose a new
efficient reasoning module for monotonically calculating the deductive closure under
the assumption of a strict order. This computational module can be useful for
general AI solutions that need fast reasoning in regard to strict orders. Second,
we apply our reasoning module to extend two popular active learning approaches
to handle relational data and empirically achieve substantial improvements. This
is the first attempt to design active learning query strategies tailored for strict
partial orders. Third, under the proposed framework, we solve the problem of
concept prerequisite learning and our approach appears to be successful on data
from four educational domains, whereas previous work have not exploited the
relational structure of prerequisites as strict partial orders in a principled way.

5.2 Reasoning of a Strict Order

5.2.1 Preliminary

Definition 6 (Strict Order). Given a finite set V , a subset G of V × V is called
a strict order if and only if it satisfies the two conditions: (i) if (a, b) ∈ G and
(b, c) ∈ G, then (a, c) ∈ G; (ii) if (a, b) ∈ G, then (b, a) 6∈ G.

Definition 7 (G-Oracle). For two subsets G,H ⊆ V × V , a function denoted
as WH(·, ·) : H 7→ {−1, 1} is called a G-oracle on H iff for any (u, v) ∈ H,
WH(u, v) = −1 + 2 · 1[(u, v) ∈ G].

The G-oracle returns a label denoting whether a pair belongs to G.

Definition 8 (Completeness of an Oracle). A G-oracle of strict order WH is called
complete if and only if H satisfies: for any a, b, c ∈ V , (i) if (a, b) ∈ H ∩ G,
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(b, c) ∈ H ∩ G, then (a, c) ∈ H ∩ G; (ii) if (a, b) ∈ H ∩ G, (a, c) ∈ H ∩ Gc, then
(b, c) ∈ H ∩Gc; (iii) if (b, c) ∈ H ∩G, (a, c) ∈ H ∩Gc, then (a, b) ∈ H ∩Gc; (iv)
if (a, b) ∈ H ∩G, then (b, a) ∈ H ∩Gc, where Gc is the complement of G.

WH is called complete if it is consistent under transitivity when restricted on
pairs from H.

Definition 9 (Closure). Given a strict order G, for any H ⊆ V ×V , its closure is
defined to be the smallest set H such that H ⊆ H and the G-oracle WH is complete.

Proposition 1. For any H ⊆ V × V , the closure of H subject to a strict order G
is unique. 1

Proposition 2. Let G be a strict order of V . For a complete G-oracle WH , H ∩G
is also a strict order of V .

Definition 10 (Descendant and Ancestor). Given a strict order G of V and
a ∈ V , its ancestor subject to G is AGa := {b | (b, a) ∈ G} and its descendant is
DG
a := {b | (a, b) ∈ G}.

5.2.2 Reasoning Module for Closure Calculation

With the definitions in the previous section, this section proposes a reasoning
module that is designed to monotonically calculate the deductive closure for strict
orders. Remark that a key difference between the traditional transitive closure
and our definition of closure (Definition 8&9) is that the former only focuses
on G but the latter requires calculation for both G and Gc. In the context of
machine learning, relations in G and Gc correspond to positive examples and
negative examples, respectively. Since both of these examples are crucial for
training classifiers, existing algorithms for calculating transitive closure such as the
Warshall algorithm are not applicable. Thus we propose the following theorem for
monotonically computing the closure.

Theorem 1. Let G be a strict order of V and WH a complete G-oracle on H ⊆
V × V . For any pair (a, b) ∈ V × V , define the notation C(a,b) by

(i) If (a, b) ∈ H, C(a,b) := H.
1Please see Appendix for the proofs of propositions and theorems introduced hereafter.
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(ii) If (a, b) ∈ Gc ∩Hc, C(a,b) := H ∪N ′(a,b) where

N ′(a,b) := {(d, c)|c ∈ AG∩Hb ∪ {b}, d ∈ DG∩H
a ∪ {a}},

and particularly N ′(a,b) ⊆ Gc.

(iii) If (a, b) ∈ G ∩Hc, C(a,b) := H ∪N(a,b) ∪R(a,b) ∪ S(a,b) ∪ T(a,b) ∪O(a,b), where

N(a,b) := {(c, d) | c ∈ AG∩Ha ∪ {a}, d ∈ DG∩H
b ∪ {b}},

R(a,b) := {(d, c) | (c, d) ∈ N(a,b)},

S(a,b) := {(d, e) | c ∈ AG∩Ha ∪ {a}, d ∈ DG∩H
b ∪ {b},

(c, e) ∈ Gc ∩H},

T(a,b) := {(e, c) | c ∈ AG∩Ha ∪ {a}, d ∈ DG∩H
b ∪ {b},

(e, d) ∈ Gc ∩H},

O(a,b) :=
⋃

(c,d)∈S(a,b)∪T(a,b)
N ′′(c,d),

N ′′(c,d) := {(f, e) | e ∈ AG∩(H∪N(a,b))
d ∪ {d},

f ∈ DG∩(H∪N(a,b))
c ∪ {c}}.

In particular, N(a,b) ⊆ G and R(a,b) ∪ S(a,b) ∪ T(a,b) ∪O(a,b) ⊆ Gc.

For any pair (x, y) ∈ V × V , the closure of H ′ = H ∪ {(x, y)} is C(x,y).

Figure 5.1 provides an informal explanation of each necessary condition (except
for R(a,b)) mentioned in the theorem. If (a, b) is a positive example, i.e. (a, b) ∈ G,
then (i) N(a,b) is a set of inferred positive examples by transitivity; (ii) R(a,b) is a
set of inferred negative examples by irreflexivity; (iii) S(a,b) and T(a,b) are sets of
inferred negative examples by transitivity; (iv) O(a,b) is a set of negative examples
inferred from S(a,b) and T(a,b). If (a, b) is a negative example, i.e. (a, b) ∈ Gc, then
N ′(a,b) is a set of negative examples inferred by transitivity.

5.2.3 Computational Efficiency

As we will elaborate later, one computational hurdle of our active learning algorithm
is to efficiently calculate the closure set C(x,y) given a complete G-oracle WH . In
particular, among all the formula in Theorem 1, we found the main bottleneck is
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Figure 5.1. Following the notations in Theorem 1: (a) Black lines are pairs in H, solid
lines are pairs in G, and dashed lines are pairs in Gc. The pair (a, b) in the cyan color is
the pair to be labeled or deduced. (b) If (a, b) ∈ G, {(a, b), (e, f), (a, f), (e, b)} ⊆ N(a,b).
(c) If (a, b) ∈ G, {(h, e), (h, a)} ⊆ T(a,b) and {(b, g), (f, g)} ⊆ S(a,b). (d) If (a, b) ∈ Gc,
{(a, b), (a, d), (c, b), (c, d)} ⊆ N ′(a,b). Likewise, if ∃(x, y) ∈ G, s.t.(a, b) ∈ S(x,y) ∪ T(x,y),
{(a, b), (a, d), (c, b)} ⊆ O(x,y).

to efficiently calculate O(x,y) whose worst time complexity is O(|H|3) (followed by
Prop. 3), while others can be done in O(|H|2).

Proposition 3. Following the notations in Theorem 1, given S(a,b) ∪ T(a,b), the
worst time complexity to calculate O(a,b) is O(|H|3).

Using Prop. 4, one can show that there exists a pruning rule that cuts a major
proportion of redundant set operations in calculating O(a,b).
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Proposition 4. Following the notations in Theorem 1, we have N ′′(c′,d′) ⊆ N ′′(c,d) if
(c′, d′) ∈ N ′′(c,d).

We also conduct empirical studies to examine the growth rate of calculating
C(x,y). In practice, we find the empirical growth rate is closer to linear rate, which
means the worst time complexity bound presented here is very conservative.

5.3 Active Learning of a Strict Order
Following the same introduction to pool-based active learning as described in
Section 4.2, we will start from generalizing Equation 4.1 and show that it is possible
to extend Uncertainty Sampling and Query-By-Committee, the top two performing
query strategies as shown in Figure 4.1, for considering relational data as a strict
order.

Given G a strict order of V , consider a set of data D ⊆ V × V , where (a, a) 6∈
D,∀a ∈ V . Similar to the pool-based active learning, one needs to maintain a
labeled set Dl and an unlabeled set Du. We require that D ⊆ Dl∪Duand Dl∩Du =
∅. Given a feature extractor F : V × V 7→ Rd, we can build a vector dataset
{x(a,b) = F(a, b) ∈ Rd | (a, b) ∈ D}. Let y(a,b) = −1 + 2 · 1[(a, b) ∈ G] ∈ {−1, 1} be
the ground-truth label for each (a, b) ∈ V × V . Active learning aims to query Q a
subset from D under limited budget and construct a label set Dl from Q, in order
to train a good classifier h on Dl ∩ D such that it predicts accurately whether or
not an unlabeled pair (a, b) ∈ G by h(F(a, b)) ∈ {−1, 1}.

Active learning of strict orders differs from the traditional active learning in
two unique aspects: (i) By querying the label of a single unlabeled instance, one
may obtain a set of labeled examples, with the help of strict orders’ properties; (ii)
The relational information of strict orders could also be utilized by query strategies.
We will present our efforts towards incorporating the above two aspects into active
learning of a strict order.

5.3.1 Basic Relational Reasoning in Active Learning

A basic extension from standard active learning to one under the strict order
setting is to apply relational reasoning when both updating Dl and predicting
labels. Algorithm 2 shows the pseudocode for the pool-based active learning of a
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Algorithm 2 Pseudocode for pool-based active learning of a strict order.
Input:
D ⊆ V × V % a data set

Initialize:
Dl ← {(as1 , bs1), (as2 , bs2), ..., (ask , bsk)} % initial labeled set with k seeds
Dl ← Dl % initial closure
Du ← D\Dl % initial unlabeled set

while Du 6= ∅ do
Select (a∗, b∗) from Du % according to a query strategy
Query the label y(a∗,b∗) for the selected instance (a∗, b∗)
Dl ← Dl ∪ {(a∗, b∗)}
Du ← D\Dl

end while

strict order. When updating Dl with a new instance (a, b) ∈ Du whose label y(a,b)

is acquired from querying, one first calculates D′l, i.e., the closure of Dl ∪ {(a, b)},
using Theorem 1, and then sets Dl := D′l and Du := D\D′l respectively. Therefore,
it is possible to augment the labeled set Dl with more than one pair at each stage
even though only a single instance is queried. Furthermore, the following corollary
shows that given a fixed set of samples to be queried, their querying order does not
affect the final labeled set Dl constructed.

Corollary 1.1. Given a list of pairs Q of size m whose elements are from V × V ,
let i1, . . . , im and j1, . . . , jm be two different permutations of 1, . . . ,m. Let I0 = ∅
and J0 = ∅, and Ik = Ik−1 ∪ {qik}, Jk = Jk−1 ∪ {qjk} for k = 1, . . . ,m, where ·
is defined as the closure set under G. We have Im = Jm, which is the closure of
{qi ∈ V × V | i = 1, . . . ,m}.

Corollary 1.1 is a straightforward result from the uniqueness of closure, which
is also verified by our experiments. The labeled set Dl contains two kinds of pairs
based on where their labels come from: The first kind of labels comes directly from
queries, and the second kind comes from the relational reasoning as explained by
Theorem 1. Such an approach has a clear advantage over standard active learning
at the same budget of queries, because labels of part of the test pairs can be inferred
deterministically and as a result there will be more labeled data for supervised
training. In our setup of active learning, we train classifiers on D ∩ Dl and use
them for predicting the labels of remaining pairs that are not in Dl.

55



5.3.2 Query Strategies with Relational Reasoning

The relational active learning framework as explained in the previous section
however does not consider incorporating relational reasoning in its query strategy.
We further develop a systematic approach on how to achieve this.

We start from the following formulation: at each stage, one chooses a pair
(a∗, b∗) to query based on

(a∗, b∗) = argmax
(a,b)∈Du

min
y∈{−1,1}

F (S(y(a,b) = y),Dl), (5.1)

S(y(a,b) = y) = (Dl ∪ {(a, b)}\Dl) ∩ D. (5.2)

Again, F is the scoring function. S(y(a,b) = y) is the set of pairs in D whose
labels, originally unknown ( 6∈ Dl), can now be inferred by assuming y(a,b) = y

using Theorem 1. For each (u, v) ∈ S(y(a,b) = y), its inferred label is denoted
as ŷ(u,v) in the sequel. One can see that this formulation is a generalization of
Eq. (4.1). We now proceed to develop extensions for the two query strategies
to model the dependencies between pairs imposed by the rule of a strict order.
Following the same notations as described in Section 4.2 with the only difference
that the numbering index is replaced by the pairwise index, we propose two query
strategies tailored to strict orders.
Uncertainty Sampling with Reasoning. With relational reasoning, one not only can
reduce the uncertainty of the queried pair (a, b) but also may reduce that of other
pairs deduced by assuming y(a,b)=y. The modified scoring function reads:

F (S(y(a,b) = y),Dl) =
∑

(u,v)∈S(y(a,b)=y)
1− P∆(Dl∩D)(y(u,v) = ŷ(u,v)|x(u,v)). (5.3)

Query-by-Committee with Reasoning. Likewise, one also has the extension for QBC,
where {g(k)}Ck=1 is a committee of classifiers trained on bagging samples of Dl ∩ D,

F (S(y(a,b) = y),Dl) =
∑

(u,v)∈S(y(a,b)=y)

∑C

k=1 1(ŷ(u,v) 6= g(k)(x(u,v))). (5.4)
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5.3.3 Bounds on the Number of Queries

Note that any strict order G can be described as a directed acyclic graph (DAG).
We show the lower and upper bounds on the number of queries that are needed to
learn a consistent classifier for G.

Theorem 2. Given a strict order G of V, let A be a consistent learner that makes
m queries to the oracle before termination, then

|G| ≤ m ≤ |G| (5.5)

where G is the transitive reduction [6] of G and G is the closure (Def. 9) of G.

The above lower and upper bounds are tight in the sense that there exist DAGs
G1 and G2, such that |G1| = |G1| and |G2| = |G2|. With the power of the active
learning paradigm, we want to empirically show that the number of queries needed
is much smaller.

5.4 Experiments
For evaluation, same as that in Chapter 4, we also apply the proposed active learning
algorithms to concept prerequisite learning problem. Experiments are based on the
same Wiki concept map dataset [159] and the same feature set described in the
previous chapter. We follow the evaluation protocol of active learning as described
in Section 4.4.3.1 with the only difference that here we compare the following four
query strategies:

• Random: randomly select an instance to query.

• LC: least confident sampling, a widely used uncertainty sampling variant. We
use logistic regression to estimate posterior probabilities.

• QBC: query-by-committee algorithm. We apply query-by-bagging [108] and
use a committee of three decision trees.

• CNT: a simple baseline query strategy designed to greedily select an instance
whose label can potentially infer the most number of unlabeled instances.
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Method Use reasoning
when updat-
ing Dl

Use reasoning
to select the
instance to
query

Use learning
to select the
instance to
query

Random 7 7 7

LC, QBC 7 7 3

Random-R 3 7 7

LC-R, QBC-R 3 7 3

CNT 3 3 7

LC-R+, QBC-R+ 3 3 3

Table 5.1. Summary of compared query strategies.

Following the previous notations, the scoring function for CNT is

F (S(y(a,b) = y),Dl) = |S(y(a,b) = y)|

which is solely based on logical reasoning.

For experiments, we test each query strategy under three settings: (i) Traditional
active learning where no relational information is considered. Query strategies
under this setting are denoted as Random, LC, and QBC. (ii) Relational active
learning where relation reasoning is applied to updating Dl and predicting labels of
Dtest. Query strategies under this setting are denoted as Random-R, LC-R, and
QBC-R. (iii) Besides being applied to updating Dl, relational reasoning is also
incorporated in the query strategies. Query strategies under this setting are the
baseline method CNT and our proposed extensions of LC and QBC for strict partial
orders, denoted as LC-R+ and QBC-R+, respectively. Table 5.1 summarizes the
query strategies studied in the experiments.

5.4.1 Experiment Results

5.4.1.1 Effectiveness Study

Figure 5.2 shows the AUC results of different query strategies. For each case,
we present the average values and 95% C.I. of repeated 300 trials with different
train/test splits. In addition, Figure 5.3 compares the relations between the number
of queries and the number of labeled instances across different query strategies.
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Note that in the relational active learning setting querying a single unlabeled
instance will result in one or more labeled instances. According to Figure 5.2 and
Figure 5.3, we have the following observations:

First, by comparing query strategies under the settings (ii) and (iii) with
setting (i), we observe that incorporating relational reasoning into active learning
substantially improves the AUC performance of each query strategy. In addition,
we find the query order, which is supposed to be different for each strategy, does not
affect Dl at the end when D ⊆ Dl. Thus, it partly verifies Corollary 1.1. Second,
our proposed LC-R+ and QBC-R+ significantly outperform other compared query
strategies. Specifically, when comparing them with LC-R and QBC-R, we see
that incorporating relational reasoning into directing the queries helps to train a
better classifier. Figure 5.3 shows that LC-R+ and QBC-R+ lead to more labeled
instances when using the same amount of queries than that of LC-R and QBC-R.
This partly contributes to the performance gain. Third, LC-R+ and QBC-R+ are
more effective at both collecting a larger labeled set and training better classifiers
than the CNT baseline. In addition, by comparing CNT with LC-R, QBC-R, and
Random-R, we observe that a larger size of the labeled set does not always lead to
a better performance. Such observations demonstrate the necessity of combining
deterministic relational reasoning and probabilistic machine learning in designing
query strategies.

5.4.1.2 Efficiency Study

The proposed reasoning module is designed to be plugged into any algorithm that
needs reasoning of strict orders. Thus besides verifying effectiveness, it is also
important to investigate its efficiency. We conduct empirical studies on the runtime
of the reasoning module.

Figure 5.4 shows the relation between the average runtime for calculating the new
closure using Theorem 1 and the size of the current labeled closure |H|. Results for
both LBC-R+ and QBC-R+ are presented. We can see that as |H| keeps increasing
during the pool-based active learning process, the average runtime of calculating
C(x,y) increases almost linearly and even decreases a little at the end. Although
the worst case time complexity for calculating Theorem 1 is O(|H|3) (for O(a,b))
and O(|H|2) (for others), the runtime required is directly related to the number of
ascendants and descendants of elements in V , which is usually different for the four
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Figure 5.2. Comparison of different query strategies’ AUC scores for concept prerequisite
learning.
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Figure 5.2. Comparison of different query strategies’ AUC scores for concept prerequisite
learning. (cont.)
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Figure 5.3. Comparison of relations between the number of queries and the number of
labeled instances when using different query strategies.
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Figure 5.3. Comparison of relations between the number of queries and the number of
labeled instances when using different query strategies. (cont.)

strict order datasets used. If the few ascendants and descendants effectively control
the size of calculations as we have observed, the runtime will be short regardless of
a large |H|. This might explain why the growth of calculating C(x,y) is near linear.

We also empirically evaluate the effects of using Proposition 4 on the efficiency.
Specifically, we measure the total runtime of O(a,b) calculation in Theorem 1 for a
full round of active learning (until Du = ∅) with and without applying the pruning
rule induced by Proposition 4. The results are shown in Table 5.2 where the
numbers are the average runtime over all 300 different rounds of active learning for
each dataset. We can see that the pruning can lead to a speedup of 40-55% in the
LC-R+ experiments and a speedup of 49-55% in the QBC-R+ experiments, which
shows that Proposition 4 is helpful for higher efficiency.
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Figure 5.4. The average runtime for calculating the new closure using Theorem 1 v.s.
the size of current labeled closure |H|.

5.5 Related Work
In general, there have been various types of strategies for active learning. The
most popular active learning approach is to query the most informative instances.
Typical algorithms in this category include uncertainty sampling [10,86,87,152],
query-by-committee [36,45,146], mutual information based sampling [55,56], and
expected error reduction sampling [141]. Another line of active learning approaches
select instances based on how representative the unlabeled instances are, where
clustering method is usually applied to measure representativeness [24, 37, 121].
In addition, there are also query strategies that select instances based on the
combination of informativeness and representativeness [41,68,160,168].

As for active learning of relational data, there have been research efforts towards
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Domain LC-R+ QBC-R+
w/o pruning w/ pruning w/o pruning w/ pruning

Data mining 5.5 3.3 (-40%) 5.5 2.6 (-53%)
Geometry 85.5 39.2 (-54%) 69.6 31.4 (-55%)
Physics 111.0 58.8 (-47%) 117.1 60.2 (-49%)
Precalculus 134.3 59.9 (-55%) 167.4 74.8 (-55%)

Table 5.2. The effect of Proposition 4 on the total runtime (s) of O(a,b) calculation in
Theorem 1 for a full round of active learning (until Du = ∅).

applying active learning to "learning to rank" [23,29,39,40,103]. However, to our
knowledge, there is no existing query strategy that is designed for strict partial
orders. Often, learning to rank relies on binary classifiers or probabilistic models
that are consistent to the rule of a total order. Active learning methods for ranking
are not suitable for partial orders, since a classifier consistent with a total order
will always lead to a non-zero lower bound of error rate given the groundtruth as
a partial order but not a total order. One related active learning work that deals
with a similar setting to ours is [138], whereas equivalence relations are considered
instead. Particularly, they made several crude approximations in order to expedite
the example selection process to a computational tractable level. We approach the
design of query strategies from a quite different perspective while keeping efficiency
as one of our central concerns.

5.6 Summary and Discussion
This chapter proposes an active learning framework tailored to relational data in
the form of strict partial orders. An efficient reasoning module is proposed to
extend two commonly used query strategies – uncertainty sampling and query by
committee. Experiments on concept prerequisite learning show that incorporating
relational reasoning in both selecting valuable examples to label and expanding
the training set significantly improves standard active learning approaches. Future
work could be to explore the following: (i) apply the reasoning module to extend
other query strategies; (ii) test the proposed algorithm on other types of strict
partial orders in which active learning is important; (iii) active learning of strict
partial orders from a noisy oracle.
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Chapters 2-5 have introduced research efforts on machine learning methods for
concept prerequisite learning. Compared with other well-studied relations such
as “is-a”, the research on concept prerequisite relations is at an early stage. The
proposed active learning research will help deal with the current situation where
the number of concept prerequisite labels is very limited. As more researchers
work on this topic and contribute to the datasets, there will be more opportunities
for developing effective data-driven learning methods, even for neural-net based
methods. The ultimate goal is to have a scalable learning method which can
accurately measure the prerequisite relation among concepts. Next chapter will
switch to another educational application and propose supervised learning methods
for automatic distractor generation for multiple choice questions.
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Chapter 6 |
Automatic Distractor Generation
for Multiple Choice Questions

6.1 Introduction
Multiple choice questions (MCQs) are widely used as an assessment of students’
knowledge and skills. A MCQ consists of three elements: (i) stem, the question
sentence; (ii) key, the correct answer; (iii) distractors, alternative answers used to
distract students from the correct answer. Among all methods for creating good
MCQs, finding reasonable distractors is crucial and usually the most time-consuming.
We here investigate automatic distractor generation (DG), i.e., generating distractors
given the stem and the key to the question. We focus on the case where distractors
are not limited to single words and can be phrases and sentences.

Rather than generate trivial wrong answers, the goal of DG is to generate
plausible false answers - good distractors. Specifically, a “good” distractor should
be at least semantically related to the key [52], grammatically correct given the
stem, and consistent with the semantic context of the stem. Taking these criterion
into consideration, most existing methods for DG are based on various similarity
measures. These include WordNet-based metrics [118], embedding-based similari-
ties [54,70,80], n-gram co-occurrence likelihood [63], phonetic and morphological
similarities [130], structural similarities in an ontology [149], a thesaurus [150], con-
text similarity [131], context-sensitive inference [171], and syntactic similarity [25].
Then distractors are selected from a candidate distractor set based on a weighted
combination of similarities, where the weights are determined by heuristics.
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In contrast to above-mentioned similarity-based methods, this chapter explores
machine learning based methods to solve DG. The chapter will start with a brief
literature review (Section 6.2) on automatic question generation and distractor
generation. Section 6.3 proposes a generative model leanred from training generative
adversarial nets [51] to create useful distractors for automatically creating fill-in-
the-blank (FITB) multiple choice questions. Section 6.4 investigates how machine
learning models, specifically ranking models, can be used to select useful distractors
for multiple choice questions.

6.2 Related Work

6.2.1 Automatic Question Generation

Dating back to the 1970s when Autoquest system [166] was proposed, there has
been a considerable amount of prior work on automatic question generation for
educational purposes. Most existing work on automatic question generation can
be categorized into two families: (i) Wh-question generation [27, 35, 62, 118]
and (ii) fill-in-the-blank question generation (FITB-QG) [2,11,54,63,80,84,
97,131,150,165].

The research on Wh-question generation focuses on syntax-based transforma-
tion and aims to change syntactic structures of sentences to convert them into
interrogative sentences as questions. The work in this area mainly emphasizes
the grammaticality of the generated questions. Typical approaches for generating
Wh-questions include syntactic transformation rules [118], template/pattern-based
generation [27,35], overgenerating transformations and ranking [61,62], etc. These
methods relies heavily on the rule-based syntactic transformation of a declara-
tive sentence. Only recently there have been few studies [42, 173] that are fully
data-driven and do not rely on manually generated rules.

Unlike Wh-question generation that focuses on syntax-based transformation,
FITB-QG avoids the grammaticality issue by blanking out existing one or more
words from a given good sentence. Early work in FITB-QG mainly focused
on English language learning, with applications including evaluating students’
vocabulary [130] and testing knowledge of using verbs [150], adjectives [97], and
prepositions [84]. Recently, FITB-QG generated exercise questions as multiple-
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choice quizzes for one or multiple subjects [2, 11,54,80]. Our method aligns more
closely to FITB-QG for general knowledge assessment.

6.2.2 Distractor Generation

For the DG problem, many systems utilize WordNet [113] to find synonyms or
other related words as distractors [119]. Although WordNet has 117,000 synsets, its
coverage is limited when compared to general knowledge bases such as Wikipedia.
Other work has explored using the link structure of ontologies [149], which usually
requires a pre-existing domain-specific ontology. Other methods choose distractors
from sentences in a constrained set of source texts [2, 74]. Our methods do not
have such constraints and can select distractors from the entire Wikipedia or any
pre-defined candidate distractor set. Others also investigate various similarity
metrics for DG, including embedding-based similarities [54, 70, 80], n-gram co-
occurrence likelihood [63], phonetic and morphological similarities [130], structural
similarities in an ontology [149], a thesaurus [150], context similarity [131], context-
sensitive inference [171], and syntactic similarity [25]. Our proposed methods are
fundamentally different from these unsupervised similarity-based methods in that
the training is supervised.

6.3 Distractor Generation with Generative Adversar-
ial Nets for Automatically Creating Fill-in-the-blank
Questions

6.3.1 Introduction

Different from existing approaches which heavily depend on the key, we propose to
learn distractor distribution conditioned on the stem, since the semantic information
conveyed by the stem is also critical to generate “good” distractors. Specifically,
we adapt generative adversarial nets (GANs) [51] to tackle DG. We simultaneously
train two models: a generative model G that captures real data (corresponding to
the key to the FITB question) distribution given a context (corresponding to the
stem), and a discriminative model D that estimates the probability that a sample
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comes from the real training data rather than G. The training procedure for G is
to maximize the probability of D making a mistake. Distractors can be generated
according to the distribution estimated by G.

The proposed GAN model is trained on the Wikipedia corpus and is able to
predict Wiki entities as distractors. We evaluate the proposed method on two
biology question datasets: (i) Wiki-FITB where 30 sentences from Wikipedia are
selected and transformed into FITB questions; (ii) Course-FITB where 92 FITB
questions are selected from actual college-level exams. Our method is compared
with a widely used word2vec-based method. For each question, a list of distractors is
generated and evaluated by domain experts. Given predictions of the two methods,
we propose to apply a second-stage learner to utilize information in both the stem
and the key. This outperforms both the proposed GAN-based method and the
word2vec-based method on two datasets, with 51.7% and 48.4% of distractors
generated being acceptable.

Our major contribution is summarized as follows.

• The proposed machine learning-based approach is fundamentally different
from previous unsupervised similarity-based approaches and it is the first
application of GANs to DG.

• The proposed method only uses stem information and it can be used in
combination with existing key-based methods for generating distractors that
better fit question context.

• The college-level exam FITB question set can be used for evaluating distractor
generation or general FITB-QG.

6.3.2 Methods

6.3.2.1 Generative Adversarial Nets

Proposed by Goodfellow et al. [51], generative adversarial nets are a novel approach
to train a generative model. The key to GANs are two “adversarial” models: the
Generator G and the Discriminator D. G is a generative model that aims to
capture real data distribution pdata(x). D is a discriminative model that estimates
the probability that a sample came from the real training data rather than G.
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Both G and D could be a non-linear mapping function. To learn the generator’s
distribution pg over data x, G parameterized by θg maps a prior noise distribution
pz(z) to the data space as G(z; θg). On the other hand, the discriminator D(x; θd)
parameterized by θd outputs a single scalar representing the probability that a
sample x came from training data rather than pg.

D is trained to maximize the probability of assigning the correct label to both
training examples and samples from G. Simultaneously G is trained to maximize
the probability of D making a mistake, i.e., minimizing log(1 − D(G(z))). The
whole training procedure for G and D follows a two-player minimax game:

min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (6.1)

6.3.2.2 Conditional GANs for DG

Since our goal is to generate distractors given a question sentence, we therefore adapt
a GAN to distractor generation such that both the generator and the discriminator
are conditioned on the extra context c learned from the question sentence (see
Section 6.3.2.3). For this we put c into both the discriminator and generator as
additional input. More precisely in the generator, the combination of a noise vector
z and c is taken as a joint input, while in the discriminator, both the generated
sample x and c are utilized to determine whether x came from training data. As a
consequence, the minimax game in Equation 6.1 can be rewritten as:

min
G

max
D

Ex∼pdata(x)[logD(x|c)] + Ez∼pz(z)[log(1−D(G(z|c)))] (6.2)

which is the conditional GAN proposed by [117].
The neural-network based training framework provides additional flexibility on

how the input vectors are combined. In the generator, we simply concatenate both
z and c to build another vector representation: z̃ = z� c where � represents the
concatenation. In the discriminator, we concatenate the linear transformation of
the generated sample x and c: x̃ = (Wxx)� c , where Wx is a weight matrix to be
learned. x̃ is then fed to a multi-layer perceptron.

GANs have a serious limitation requiring that the composition of the generator
and the discriminator are fully differentiable. This is not true for discrete variables
such as tokens in the text. Since the generator has an output softmax layer which
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Figure 6.1. Conditional GANs for Distractor Generation.

can be interpreted as the probability of yielding each token, we sample a discrete
token value from the distribution. As such, the back-propagation algorithm alone
cannot provide a valid training signal for the generator since the sampling operation
is not differentiable.

For this a number of approaches have been proposed, including policy gra-
dient [170] and Gumbel softmax trick [69, 106]. We adopt the Gumbel softmax
method since the policy gradient method involves the design of a reward function,
which can lead to training instability. While prior work on Gumbel softmax trick
were on datasets with a small number of classes (e.g. 10 classes for MNIST dataset),
here we investigate its effectiveness on datasets with orders of magnitude more
classes.

Similar to the re-parameterization trick in variational auto-encoder (VAE) [77],
we efficiently draw samples x from a categorical distribution with class probabilities
π using the Gumbel-Max trick [107]:

x = one_hot(argmax
i

[gi + log πi]) ≈ softmax(g + log π) (6.3)

where gi (i = 1, 2, · · · , K) is an i.i.d sample drawn from Gumbel(0, 1) distribution
and K is the total number of classes. The softmax function is used as a continuous,
differentiable approximation to argmax, generating a K-dimensional sample vector
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Figure 6.2. Context Modeling of the Question Sentence

x ∈ RK−1 where

xi = exp((gi + log πi)/τ)∑K
j=1 exp((gj + log πj)/τ)

(6.4)

with τ being a temperature hyper-parameter.
Since the Gumbel-Max trick enables back-propagating training signals from the

discriminator to the generator, we can use the minimax optimization for discrete
variables.

Figure 6.1 presents the general architecture of the proposed conditional GAN
for DG, where c is the learned context vector representation of the question stem,
x the vector representation of the correct answer or the generated sample, and z a
noise vector sampled from a prior noise distribution. G represents the generator,
and D represents the discriminator.

6.3.2.3 Context Modeling of the Question Sentence

The architecture proposed in Figure 6.1 requires a context vector c of the ques-
tion stem. To model the context, we use long short-term memory (LSTM) [64].
Specifically, since each question sentence could be divided into a left (sL) and a
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right (sR) part by the position of the blank, two LSTMs (LSTML and LSTMR)
are used to model the left context (cL) and the right context (cR) separately. The
context vector c is therefore a concatenation of cL and cR. Figure 6.2 presents
the model architecture. Consider the question sentence “A is a networking
device that forwards data packets between computer networks.”. The question is
first split into two parts:“A” and “is a networking device that forwards data packets
between computer networks.” The left and right part is then fed into LSTML and
LSTMR respectively, resulting in cL and cR. Next we concatenate cL and cR to
obtain the context vector c. In practice, we reverse the order of the words in the
right part sR when feeding it to LSTMR, in order to emphasize neighboring words
around the blank.

6.3.2.4 Implementation Details

The generator and the discriminator is implemented by a 2-layer perceptron with a
hidden size of 350. The network utilizes Leaky ReLU [105] activation. We set the
noise vector z as a 50-dimensional vector drawn from N (0, 1) and each LSTM to
have a hidden size of 150. During training, Adam algorithm [75] with a learning
rate of 0.001 is used. The temperature τ is fixed as 1.

6.3.3 Experiments

6.3.3.1 Data Preparation

Training the proposed conditional GAN model requires a large number of (stem, key)
pairs. We propose to utilize the Wikipedia corpus for creating the training set. To
remove part of the sentence as a blank, we exploit the link structure among different
Wiki pages. Specifically, we substitute the link in a sentence with a blank to get
the stem and use the linked Wiki concept1 as the key. Thus sentences with links
could be transformed into (stem, key) pairs. For example, consider a sentence from
Wikipedia Machine learning is the subfield of computer science that, according to
Arthur Samuel in 1959, gives “computers the ability to learn without being explicitly
programmed.” It is transformed into a tuple (Machine learning is the subfield of

that, according to Arthur Samuel in 1959, gives “computers the ability to
1Each concept corresponds to an English Wiki article.

73



learn without being explicitly programmed.”, Computer_science), representing the
question sentence and correct answer. Note that DG model usually is tailored to a
certain domain, such as physics, biology, mathematics, etc. For each domain, we
select a subset of all created pairs as training data based on whether the key appears
in the domain-specific concept vocabulary. Such vocabulary is built by breadth-first
searches starting from several main concepts of the domain and filtering with several
semantic similarities such as LDA [14], word2vec, etc.

Our experiments here focus on biology. With the procedure described above,
we build a vocabulary with 8879 biology-related concepts and create a training
set with 1.62 million (stem, key) pairs. In addition, we create two test sets for
evaluation: (i) Wiki-FITB: 30 FITB questions based on sentences in Wikipedia,
selected by a domain expert; (ii) Course-FITB: 92 FITB questions from actual
exams for two college-level biology courses and GRE (biology subject) 2016.

6.3.3.2 Experiment Settings

For each (stem, key) pair, we apply the proposed FITB-QG method to generate
a list of distractors. Three domain experts with teaching experience, a Ph.D. in
biology, a Ph.D. candidate in biology and a Ph.D. candidate in entomology were
then asked collaboratively to label each of the top-4 predictions as a Good, Fair, or
Bad distractor.

We compare the proposed GAN-based FITB-QG model (GAN) with a fre-
quently used similarity-based method (W2V), which generates distractors based on
the word2vec similarity between the candidate and the key. We trained a word2vec
model on the Wiki corpus with each concept treated as an individual token.

Since a GAN only utilizes information in the stem part while W2V only uti-
lizes information in the key part, we additionally apply a second-stage learner
(GAN+W2V) to combine the strengths of GAN and W2V. For each (stem, key,
distractor) tuple, we use the prediction score and the ranking of GAN and W2V as
four features, and train a logistic regression classifier to predict the probability of a
distractor being good, fair, or bad. The final distractor predictions are ranked by
the probability of being bad estimated by the second-stage learner.

74



Dataset Methods Good Fair Bad

Wiki-FITB
GAN 28.4 (10.8) 10.8 (5.5) 60.8 (10.5)
W2V 35.8 (6.8) 10.0 (5.0) 54.2 (8.0)

GAN + W2V 40.0 (7.8) 11.7 (5.0) 48.3 (8.6)

Course-FITB
GAN 17.7 (5.0) 9.2 (3.5) 73.1 (5.9)
W2V 32.9 (5.3) 11.9 (3.5) 55.2 (5.7)

GAN + W2V 34.3 (5.7) 14.1 (3.9) 51.6 (6.0)

Table 6.1. Distractor generation results. Numbers are 95% confidence intervals of
percentages of generated distractors being good, fair, or bad, calculated in a leave-one-out
manner.

GAN W2V GAN + W2V

Speciation Natural selection Speciation
Transcription Macroevolution Natural selection
Inbreeding Evolutionary biology Microevolution
Genetic drift Microevolution Genetic drift

Table 6.2. Distractor generation examples for question “Changes in gene frequency over
time describes the process of .”, whose key is Evolution. (Legend: Good, Fair, Bad)

.

6.3.3.3 Experimental Results

The distractor generation results on two datasets are shown in Table 6.1. We
evaluate each method in a leave-one-out manner and report the 95% confidence
intervals of percentages of generated distractors being good, fair, or bad.

When comparing GAN with W2V, we can see that they achieve comparable
performance on Wiki-FITB and that W2V is significantly better than GAN on
Course-FITB. Since the GAN is based on the question stem, its distractor gener-
ation process is solely dependent on the learned association between the context
information and distractors. Course-FITB, collected from actual college exams, is
a more challenging dataset because its writing style is different from the part of
Wikipedia on which the GAN is trained. Such difference makes it difficult for the
GAN to apply the association learned from Wikipedia to questions in Course-FITB.
By design distractors are often semantically related to the key (e.g. DNA and
RNA). As such similarity-based methods like W2V can provide a strong baseline
since they explicitly utilize information about the key. W2V is limited in that
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it can only output the same distractors for a key regardless of question stems
being different. Since question stems sharing the same keys may still emphasize
on different aspects, it is desirable to generate diverse distractors for each specific
question stem. As such context-based methods such as GAN are still valuable.

We can see that GAN + W2V reduces the mean percentages of badly generated
distractors, compared to both GAN and W2V. The percentages of “acceptable”
(good + fair) distractors are 51.7% for Wiki-FITB and 48.4% for Course-FITB.
Although the difference is not significant given the small sizes of test set, the
proposed second-stage learner provides an initial attempt to combine the strengths
of GAN and W2V. Such learning-based method is a more systematic way than the
ad-hoc weighted combination of different predictions.

Table 6.2 shows an example of generated distractors for the question “Changes
in gene frequency over time describes the process of .” We can see that GAN
and W2V generate very different distractors. Since GAN is based on context, its
predictions are related to “gene” in the stem. As for W2V, the key “Evolution” is
utilized to retrieve similar concepts. In addition, we observe that GAN + W2V’s
predictions are a mix of GAN’s and W2V’s results, which reduces the percentages
of bad distractors and makes the distractors more diverse.

6.3.4 Summary

This section applied conditional GANs for distraction generation for FITB problems
which to our knowledge is the first use of GANs for this problem. Experiments
on two collected biology question sets showed that the proposed context-based
method is a valuable complement to previous similarity-based methods and that
a second-stage learner can be applied to combining the strengths of two types
of DG methods in order to achieve a better performance. Such methods should
significantly help instructors create better FITB questions. Future work could be
to explore: (i) a unified GAN model which can include key information; (ii) better
context modeling to improve model generalization.
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6.4 Distractor Generation for Multiple Choice Ques-
tions Using Learning to Rank

6.4.1 Introduction

In contrast to the previous similarity-based methods, we apply learning-based
ranking models to select distractors that resemble those in actual exam MCQs.
Specifically, we propose two types of models for DG: feature-based and NN-based
models. Our models are able to take existing heuristics as features and learn
from these questions a function beyond a simple linear combination. Learning
to generate distractors has been previously explored in a few studies. Given a
blanked question, Sakaguchi et al. [142] use a discriminative model to predict
distractors and Liang et al. [92] apply generative adversarial nets. They view DG as
a multi-class classification problem and use answers as output labels while we use
them as input. Other related work [162] uses a random forest. However, with the
reported binary classification metrics, the quality of the top generated distractors
is not quantitatively evaluated. Here we conduct a more comprehensive study on
various learning models and devise ranking evaluation metrics for DG.

Machine learning of a robust model usually requires large-scale training data.
However, to the best of our knowledge, there is no benchmark dataset for DG,
which makes it difficult to directly compare methods. Prior methods were evalu-
ated on different question sets collected from textbooks [2], Wikipedia [92], ESL
corpuses [142], etc. We propose to evaluate DG methods with two datasets: the
recently released SciQ dataset [162] (13.7K MCQs) and the MCQL dataset (7.1K
MCQs) that we made. These two datasets can be used as benchmarks for training
and testing DG models. Our experimental results show that feature-based ensem-
ble learning methods (random forest and LambdaMART) outperform both the
NN-based method and unsupervised baselines for DG.

6.4.2 Learning to Rank for Distractor Generation

We solve DG as the following ranking problem:

Definition 11 (Distractor Ranking Problem). Given a candidate distractor set D
and a MCQ datasetM = {(qi, ai, {di1, ..., dik})}Ni=1, where qi is the question stem,
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ai is the key, Di = {di1...dik} ⊆ D are the distractors associated with qi and ai, find
a point-wise ranking function r: (qi, ai, d)→ [0, 1] for d ∈ D, such that distractors
in Di are ranked higher than those in D −Di.

This problem formulation is similar to “learning to rank” [102] in information
retrieval. To learn the ranking function, we investigate two types of models:
feature-based models and NN-based models.

6.4.2.1 Feature-based Models

6.4.2.1.1 Feature Description Given a tuple (q, a, d), a feature-based model
first transforms it to a feature vector φ(q, a, d) ∈ Rd with the function φ. We design
the following features for DG, resulting in a 26-dimension feature vector:

• Emb Sim. Embedding similarity between q and d and the similarity between a
and d. We use the average GloVe embedding [129] as the sentence embedding.
Embeddings have been shown to be effective for finding semantically similar
distractors [54, 80].

• POS Sim. Jaccard similarity between a and d’s POS tags. The intuition is
that ditractors might also be noun phrases if the key is a noun phrase.

• ED. Edit distance between a and d. This measures the spelling similarity
and is useful for cases such as selecting “RNA” as a distractor for “DNA”.

• Token Sim. Jaccard similarities between q and d’s tokens, a and d’s tokens,
and q and a’s tokens. This feature is motivated by the observation that
distractors might share tokens with the key.

• Length. a and d’s character and token lengths and the difference of lengths.
This feature is designed to explore whether distractors and the key are similar
in terms of lengths.

• Suffix. The absolute and relative length of a and d’s longest common suffix.
The key and distractors often have common suffixes. For example, “maltose”,
“lactose”, and “suctose” could be good distractors for “fructose”.
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• Freq. Average word frequency in a and d. Word frequency has been used
as a proxy for words’ difficulty levels [31]. This feature is designed to select
distractors with a similar difficulty level as the key.

• Single. Singular/plural consistency of a and d. This checks the consistency of
singular vs. plural usage, which will select grammatically correct distractors
given the stem.

• Num. Whether numbers appear in a and d. This feature will cover cases
where distractors and keys contain numbers, such as “90 degree”, “one year”,
“2018”, etc.

• Wiki Sim. If a and d are Wikipedia entities, we calculate their Wiki embedding
similarity. The embedding is trained using word2vec [112] on Wikipedia data
with each Wiki entity treated as an individual token. This feature is a
complement to Emb Sim where sentence embedding is a simple average of
word embeddings.

6.4.2.1.2 Classifiers We study the following three feature-based classifiers: (i)
Logistic Regression: an efficient generalized linear classification model; (ii) Random
Forest [18]: an effective ensemble classification model; (iii) LambdaMART [21]:
a gradient boosted tree based learning-to-rank model. To train these models,
following previous notations, we use Di as positive examples and sample from
D −Di to get negative examples.

6.4.2.2 NN-based Models

Based on the recently proposed method IRGAN [157], we propose an adversarial
training framework for DG. Our framework consists of two components: a generator
G and a discriminator D. G is a generative model that aims to capture the
conditional probability of generating distractors given stems and answers P (d|q, a).
D is a discriminative model that estimates the probability that a distractor sample
comes from the real training data rather than G. Figure 6.3 presents the proposed
adversarial training architecture for DG.

Assume that the discriminator is based on an arbitrary scoring function fφ(d, q, a) ∈
R parameterized by φ, then the objective for D is to maximize the following log-
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Stem: Aspirin lowers risks of _____.
Key: heart attack
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Figure 6.3. Proposed adversarial training framework for DG.

likelihood:

max
φ

Ed∼Ptrue(d|q,a)[log(σ(fφ(d, q, a)))] + Ed∼Pθ(d|q,a)[log(1− σ(fφ(d, q, a)))] (6.5)

where σ is the sigmoid function. For the generator G, we choose another scoring
function fθ(d, q, a) ∈ R parameterized by θ, evaluate it on every possible distractor
di given a (q, a) pair, and sample generated distractors based on the discrete
probability after applying softmax:

pθ(di|q, a) = exp(τ · fθ(di, q, a))∑
j exp(τ · fθ(dj, q, a)) (6.6)

where τ is a temperature hyper-parameter.
In practice, since the total size of distractors is large, it is very time-consuming

to evaluate on every possible di. Following the common practice as in [22, 157],
we uniformly sample K candidate distractors for each (q, a) pair and evaluate fθ
on each di,∀i ∈ [1, K]. The objective for G is to “fool” D so that D mis-classifies
distractors generated by G as positive:

min
θ

Ed∼Pθ(d|q,a)[log(1− σ(fφ(d, q, a)))] (6.7)

The training procedure follows a two-player minimax game, where D and G are
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Dataset |D| # MCQs # Train # Valid # Test Avg. # Dis

SciQ 22379 13679 11679 1000 1000 3
MCQL 16446 7116 5999 554 563 2.91

Table 6.3. Dataset Statistics.

alternatively optimized towards their own objective.
The scoring function fφ and fθ can take arbitrary forms. IRGAN utilizes a

convolutional neural network based model to obtain sentence embeddings and then
calculates the cosine similarities. However, such a method ignores the word-level
interactions, which is important for the DG task. For example, if the stem asks
“which physical unit”, good distractors should be units. Therefore, we adopt the
Decomposable Attention model (DecompAtt) [127] proposed for Natural Language
Inference to measure the similarities between q and d. We also consider the
similarities between a and d. Since they are usually short sequences, we simply
use the cosine similarity between summed word embeddings. As such, the scoring
function is defined as a linear combination of DecompAtt(d, q) and Cosine(d, a).

6.4.2.3 Cascaded Learning Framework

To make the ranking process more efficient and effective, we propose a cascaded
learning framework, a multistage ensemble learning framework that has been widely
used for computer vision [155]. We experiment with 2-stage cascading, where the
first stage ranker is a simple model trained with part of the features in Sec. 6.4.2.1.1
and the second stage ranker can be any aforementioned ranking model. Such
cascading has two advantages: (i) The candidate size is significantly reduced by
the first stage ranker, which allows the use of more expensive features and complex
models in the second stage; (ii) The second stage ranker can learn from more
challenging negative examples since they are top predictions from previous stage,
which can make the learning more effective.
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6.4.3 Experiments

6.4.3.1 Datasets

We evaluate the proposed DG models on the following two datasets: (i) SciQ [162]:
crowdsourced 13.7K science MCQs covering biology, chemistry, earth science, and
physics. The questions span elementary level to college introductory level in the
US. (ii) MCQL: 7.1K MCQs crawled from the Web. Questions are about biology,
physics, and chemistry and at the Cambridge O level and college level.

For SciQ, we follow the original train/valid/test splits. For MCQL, we randomly
divide the dataset into train/valid/test with an approximate ratio of 10:1:1. We
convert the dataset to lowercase, filter out the distractors such as “all of them”,
“none of them”, “both A and B”, and keep questions with at least one distractor.
We use all the keys and distractors in the dataset as candidate distractor set D.
Table 6.3 summarizes the statistics of the two datasets after preprocessing. |D| is
the number of candidate distractors. # MCQs is the total number of MCQs. #
Train/Valid/Test is the number of questions in each split of the dataset. Avg. #
Dis is the average number of distractors per question.

6.4.3.2 Experiment Settings

We use Logistic Regression (LR) as the first stage ranker. As for the second stage,
we compare LR, Random Forest (RF), LambdaMART (LM), and the proposed
NN-based model (NN). Specifically, we set C to 1 for LR, use 500 trees for RF,
and 500 rounds of boosting for LM. For first stage training, the number of negative
samples is set to be equal to the number of distractors, which is 3 for most questions.
And we sample 100 negative samples for second stage training. More details can
be found in the supplementary material. In addition, we also study the following
unsupervised baselines that measure similarities between the key and distractors:
(i) pointwise mutual information (PMI) based on co-occurrences; (ii) edit distance
(ED), which measures the spelling similarity; and (iii) GloVe embedding similarity
(Emb Sim).

For evaluation, we report top recall (R@10), precision (P@1, P@3), mean
average precision (MAP@10), normalized discounted cumulative gain (NDCG@10),
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and mean reciprocal rank (MRR). Specifically,

R@K =
∑K
i=1 rel(i)

#distractors (6.8)

P@K =
∑K
i=1 rel(i)
K

(6.9)

AP@K =
∑K
i=1 P@i · rel(i)∑K

i=1 rel(i)
(6.10)

MAP@K =
∑Q
q=1AP@K(q)

Q
(6.11)

DCG@K =
K∑
i=1

2rel(i) − 1
log2(i+ 1) (6.12)

NDCG@K = DCG@K
IDCG@K (6.13)

MRR = 1
Q

Q∑
i=1

1
rank(i) (6.14)

where rel(·) is a binary indicator function; rel(k) = 1 if the item at rank k is a
distractor associated with a MCQ otherwise rel(k) = 0; #distractors is the number
of distractors associated with a MCQ; Q is the number of MCQs in the dataset;
IDCG@K is the ideal discounted cumulative gain, which is calculated by ranking
all distractors at the top of the result list; rank(i) refers to the rank position of
the first distractor for the i-th MCQ.

6.4.3.3 Training and Implementation Details

6.4.3.3.1 Feature-based Models. We use the implementations of scikit-learn
[128] for logistic regression and random forest experiments. For LambdaMART
experiments, we use the XGBoost library [26]. For both SCIQ and MCQL datasets
we train with 500 rounds of boosting, step size shrinkage of 0.1, maximum depth
of 30, minimum child weight of 0.1 and minimum loss reduction of 1.0 for partition.
For calculating Wiki Sim features, we use a Wikipedia dump of Oct. 2016. Part of
speech tags are calculated with NLTK [13].

The logistic regression used for the first stage ranker is based on features
including: Emb Sim, POS Sim, ED, Token Sim, Length, Suffix, and Freq. Models
for the second stage ranker is based on all features described in Sec. 6.4.2.1.1.
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Figure 6.4. Recall@K for the first stage ranker.

6.4.3.3.2 NN-based Models. Our NN-based models are implemented with
TensorFlow [1]. When training the generator, we first uniformly select K =
512 candidates and then sample 16 distractors according to Equation 6.6. The
temperature τ is set to 5. Our scoring functions are based on Decomposable
Attention Model [127]. The word embeddings are initialized using the pre-trained
GloVe [129] (840B tokens), and the embedding size is 300. Our model is optimized
using Adam algorithm [76] with a learning rate of 1e-4 and a weight decay of 1e-6.

Since the sampling process in G is not differentiable, the gradient-decent-based
optimization in the original GAN paper [51] is not directly applicable. To tackle
this problem, we use policy gradient based reinforcement learning as in IRGAN.

6.4.3.4 Experimental Results

6.4.3.4.1 First Stage Ranker The main goal of the first stage ranker is to
reduce the candidate size for the later stage while achieving a relatively high recall.
Figure 6.4 shows the Recall@K for the first stage ranker on the two datasets.
Validation set is used for choosing top K predictions for later stage training. We
empirically set K to 2000 for SciQ and 2500 for MCQL to get a recall of about
90%.
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1st
Stage
Ranker

2nd
Stage
Ranker

R@10 P@1 P@3 MAP
@10

NDCG
@10

MRR

LR

PMI 11.0 2.1 3.1 3.6 6.8 8.8
ED 14.3 12.6 9.2 8.7 12.5 18.9
Emb Sim 19.3 9.3 9.0 9.6 14.2 17.5
LR 29.7 14.8 14.1 14.7 22.1 27.6
RF 44.1 36.8 27.0 28.4 38.0 49.2
LM 43.3 37.2 26.4 28.0 37.5 49.3
NN 24.6 11.7 11.7 11.6 23.1 25.7

RF — 41.4 31.2 23.7 25.0 34.4 44.0
LM — 39.1 26.5 22.6 22.9 31.8 40.4

Table 6.4. Ranking results (%) for DG on SciQ dataset.

1st
Stage
Ranker

2nd
Stage
Ranker

R@10 P@1 P@3 MAP
@10

NDCG
@10

MRR

LR

PMI 20.7 5.9 6.8 7.8 13.5 16.2
ED 32.1 34.6 23.6 23.7 30.5 42.8
Emb Sim 32.1 25.6 18.4 20.4 26.9 33.9
LR 42.9 29.3 24.5 26.6 35.1 42.2
RF 48.4 45.5 32.7 35.4 43.8 54.8
LM 49.4 42.8 31.5 34.5 43.4 53.6
NN 36.5 22.9 22.5 22.7 34.6 36.7

RF — 48.0 40.9 30.4 33.6 42.0 51.1
LM — 46.7 42.5 30.6 33.0 41.6 52.7

Table 6.5. Ranking results (%) for DG on MCQL dataset.

6.4.3.4.2 Distractor Ranking Results Table 6.4 and Table 6.5 lists the
ranking results for DG. From the table we observe the following: (i) The proposed
ranking models perform better than unsupervised similarity-based methods (PMI,
ED, and Emb Sim) most of the time, which is expected since similarity-based
heuristics are used as features. (ii) Ensemble models - RF and LM - have comparable
performance and are significantly better than other methods. These ensemble
methods are more suitable for capturing the nonlinear relation between the proposed
feature set and distractors. (iii) NN performs worse than feature-based models. The
main reason is that NN is solely based on word embeddings. Although embedding
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# SciQ MCQL

1 Emb Sim (a, d) Emb Sim (a, d)
2 Freq d Token Sim (a, d)
3 Freq a ED
4 Wiki Sim Suffix
5 Emb Sim (q, d) Suffix / len(d)
6 Suffix Freq a
7 Suffix / len(d) Wiki Sim
8 Suffix / len(a) Freq d
9 Token Sim (a, d) Emb Sim (q, d)
10 ED Suffix / len(a)

Table 6.6. Top 10 important features for learning to rank distractors.

similarity is the most important feature, information provided by other top features
such as ED, Suffix, Freq is missing in NN. Given the limited training examples
(11.6K for SciQ and 6K for MCQL), it is difficult to learn a robust end-to-end
NN-based model.

6.4.3.4.3 Feature Analysis We conduct a feature analysis to have more in-
sights on the proposed feature set. Feature importance is calculated by “mean
decrease impurity” using RF. It is defined as the total decrease in node impu-
rity, weighted by the probability of reaching that node, averaged over all trees of
the ensemble. Table 6.6 lists the top 10 important features for SciQ and MCQL
datasets. We find that: (i) the embedding similarity between a and d is the most
important feature, which shows embeddings are effective at capturing semantic
relations between a and d. (ii) String similarities such as Token Sim, ED, and
Suffix are more important in MCQL than those in SciQ. This is consistent with
the observation that ED has relatively good performance as seen in Table 6.5. (iii)
The set of top 10 features is the same for SciQ and MCQL, regardless of order.

6.4.3.4.4 Effects of Cascaded Learning Since we choose the top 2000 for
SciQ and 2500 for MCQL from first stage, the ranking candidate size is reduced
by 91% for SciQ and 85% for MCQL, which makes the second stage learning
more efficient. To study whether cascaded learning is effective, we experiment
with RF and LM without 2-stage learning, as shown as the bottom two rows in
Table 6.1. Here we sample 100 negative samples for training models in order to
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make a fair comparison with other methods using 2-stage learning. We can see
that the performance is better when cascaded learning is applied.

6.4.4 Summary

This section investigated DG as a ranking problem and applied feature-based and
NN-based supervised ranking models to the task. Experiments with the SciQ and
the MCQL datasets empirically show that ensemble learning models (random forest
and LambdaMART) outperform both the NN-based method and unsupervised
baselines. The MCQL data is publicly available upon request. The two datasets
can be used as benchmarks for further DG research. Future work will be to design
a user interface to implement the proposed models to help teachers with DG and
collect more user data for model training.

6.5 Discussion
This chapter has discussed supervised learning methods for automatic distractor
generation for creating multiple choice questions. Despite the methodology con-
tribution, we also notice two limitations: (i) The proposed DG methods currently
only create questions that test the ability of recalling facts and basic concepts.
According to Bloom’s Taxonomy [8], these questions are ideal for lower-level ma-
terial. Generating assessments at higher levels of the taxonomy is beyond the
scope of the dissertation. (ii) The proposed methods are only evaluated with
small-scale crowdsourcing without being tested under a real educational setting.
Thus a promising future direction should be to deploy the proposed DG methods to
an actual MCQ creation system and to let people take the assessments generated.
The deployment of such a MCQ creation system is non-trivial and is yet to be
explored. Next chapter will introduce BBookX, an educational application where
the proposed methods for distractor generation and concept prerequisite learning
would potentially be useful.
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Chapter 7 |
BBookX: a Computer-facilitated
Book Creation Tool

7.1 Introduction
Textbooks play a crucial role in both the teaching and learning process. However, in
practice, textbooks have several issues. Authoring a new textbook usually requires
a great amount of time and effort, even for experts. A tool that facilitates the
book creation process could be very helpful. It is not easy to keep an existing
textbook up-to-date, especially for fast changing domains such as computer science.
For example, most existing machine learning books as of this date lack recent
developments in deep learning. However, most of such information can be found in
OERs, such as publicly available scientific papers, lecture notes, Wikipedia, etc.
For certain classes, teachers may want to modify the book content, change the
order of sections, or combine content from different books. This can give flexibility
for designing personalized textbooks.

To deal with these issues this chapter introduces BBookX [88, 89], a novel
collaborative computer-facilitated textbook creation system. The goal for BBookX
is to automatically build with author guidance online textbooks from open educa-
tional resources (OERs). Designed to utilize information retrieval techniques to
intelligently harvest existing OERs, BBookX is currently built on top of Wikipedia.
However, it can also incorporate other available OERs. Such a tool has the potential
to reduce the cost of creating and maintaining learning resources, contribute to open
educational resources, and provide more up to date information for fast changing
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fields.
BBookX has an interactive Web interface that supports real-time book creation.

Given a set of user-generated criteria, it returns a list of relevant material that
can be put into the book. Users can accept, reject, or reorder the returned results.
Such feedback allows the system to reformulate the query in order to return better
results. In addition, BBookX can create an open version of existing textbooks by
automatically linking their existing book chapters to Wiki articles.

7.2 System Overview
The system overview of BBookX shown in Figure 7.1 consists of two major compo-
nents: the open book repository construction and the interactive book creation tool.
The open book repository is built from two resources. First, existing online open
access textbooks are collected. Second, for other textbooks, it is possible to create
a Wiki-based open version by linking chapters to Wikipedia articles. Both open
access books and Wiki-based open books are stored in the open book repository
and indexed using Solr/Lucene1. The interactive book creation component allows
users to specify the information of the book which they want to build using queries.
The system will then retrieve a list of indexed educational resources ranked by the
relevance to the query. An interactive user interface provides easy click selection
and drag/drop functions allowing users to evaluate the returned resources. User
feedback is utilized by an explicit relevance feedback mechanism to reformulate the
query to generate a new list of results. The generated book will be refined through
such an interactive search process. Details of these two components are discussed
later.

7.3 Open Book Repository

7.3.1 Collecting Open Access Textbooks

In order to construct our open book repository, we first create a collection of existing
online open access textbooks by crawling different websites. Our available data

1http://lucene.apache.org/solr/
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Figure 7.1. BBookX system overview.

sources include Wikibooks, Saylor Academy2, MIT OCW3, OpenStax College4, etc.
So far we have collected more than 3000 open access textbooks.

7.3.2 Generating Open Books Using Wikipedia

In order to provide high-quality and well-structured open books, we also utilize
classic textbooks created by experts. Here we create an open version of existing
books using Wikipedia. Our method is to link book chapters to Wiki articles.
Specifically, for each chapter we provide users a list of Wiki articles which are most
relevant to the topics covered in the book. Our method consists of three modules:
concept identification, candidate selection and candidate ranking.

Concept Identification identifies the important concepts discussed in each
2http://www.saylor.org/books/
3http://ocw.mit.edu/courses/online-textbooks/
4http://openstaxcollege.org/
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Textbook P@1 P@3 P@5 MAP@10
Computer networks 0.84 0.52 0.42 0.37
Macroeconomics 0.83 0.54 0.42 0.34
Precalculus 0.83 0.46 0.39 0.34

Table 7.1. Performance of the candidate ranking on three different textbooks.

book chapter. First, we build a domain-specific dictionary which contains the
concepts related to the book topic. A depth-first search method is used to crawl
Wikipedia with the seed set to be the main Wiki page related to the topic. Titles
of Wiki articles visited by our crawler will be added to the concept dictionary [137].
Second, we match concepts from the dictionary in the book chapter and calculate
the importance score for each concept using term frequency-inverse document
frequency (tf-idf).

Candidate Selection selects the candidate Wiki articles related to the concepts
in the book chapter. Two approaches are applied to collecting the candidate set.
The similarity between the title of the book chapter and the title of Wiki articles
is determined whereby if the Wiki title also appears in the chapter title, then the
Wiki article is added to the candidate set. In addition, the similarity between
the content of Wikipedia articles and that of the book chapter when each book
chapter and Wikipedia article is represented as a tf-idf vector using all vector
space concepts in the dictionary. The content similarity is calculated by the cosine
similarity between tf-idf vectors and top N Wiki articles with high similarity are
included in the candidate set.

Candidate Ranking ranks the candidates for the most relevant Wiki articles.
Using a learning to rank model, SVM rank [72], different features are extracted for
training including local features, such as content similarity and the Jaccard distance
between titles, and global features such as redundancy features and consistency
features5. While local features are able to capture the relatedness between the book
chapter and Wiki candidates, global features are used to ensure global coherence
between Wiki candidates. SVM rank is tested on three textbooks from different
domains. For each book chapter, three graduate students label each Wiki candidate
as “relevant” or “irrelevant” with evaluation of 5-fold cross-validation on all chapters
of the three books. As listed in Table 7.1, the performance of the proposed ranking

5More details of the proposed candidate ranking method can be found in our recent work [158].
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Figure 7.2. Example of a Computer Networking book created using Wikipedia. The
left part is the table of contents of the original book. The right part is the generated
table of contents.

method is consistent on three different textbooks.
Figure 7.2 shows a part of the book generated for an existing textbook “Computer

Networking: Principles, Protocols, and Practice”. The left side of the figure is the
table of contents of the original book. Our method of the subsections (e.g. 3.1.1,
3.1.2) show the top candidate Wiki article for each section on the right side and
link the book chapter sections to the relevant Wiki article.

7.3.3 Indexing Subsystem

The indexing subsystem indexes all open educational resources collected by the
system, including Wikipedia articles, open access textbooks, and Wiki-based open
books created by BBookX. A Wikipedia dump of February 2016 is used. Each
Wikipedia article and book chapter indexed is first preprocessed, which includes
tokenization, stop word and punctuation removal, conversion to lower case, and
stemming. Then Solr/Lucene is used to build a full text index for the content of
each document. To calculate the similarity score, key phrases of each document
are also extracted and indexed [147]. Specifically, anchor texts are extracted from
each Wiki article as key phrases. For book chapters, the Maui tool [110] is used
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to extract keyphrases. Besides full text and key phrases, the metadata of each
document is also indexed, such as Wiki title, book chapter title, document source,
etc.

7.4 Interactive Book Creation
Parts of the user interface for the interactive book creation tool are shown in
Figure 7.3.

7.4.1 User Interface

The software for BBookX is a node application built with the SANE stack (Sailsjs
and Emberjs). Sailsjs is used for the API interface to store in MongoDB the
application data, including information about users and their built books. Emberjs
is used to build the JavaScript front end.

The current web interface components are shown in Figure 7.3. To use BBookX,
users start with registration and login. They can then choose to keep working on
previously built books in the “Library” or start building a new book. The book
building process first requires adding a book title. As shown in figure 7.3a, users
can then click the “Add Chapter” button to work on a new chapter. Figure 7.3b
shows the interface to add a chapter. After creating a chapter title and adding
a short description which can be keyphrases or sentences, users click the “Run”
button to let BBookX retrieve a list of relevant OER. When the system finishes
searching, users can review each result by clicking the links that allow a preview in
a new browser tab. Users then click the results they wish to keep and add them
to the “Saved Results” list. If users are still not satisfied with the results or want
more relevant OER, they can click “Regenerate Results” to re-run the search. User
feedback is be utilized by the system to reformulate the query for other results. In
addition, BBookX supports reordering OER or chapters by dragging and dropping.
The built books can be exported as text files for further editing or as HTML for
embedding in other Web pages.
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(a) Building a book.

Figure 7.3. Interactive User interface.

7.4.2 Query Subsystem

The query subsystem receives the information of a chapter/subchapter as a query
and returns a ranked list of relevant educational resources, including Wiki articles
and sections of open books. It mainly consists of the following three processes:

Querying: For a query q = (tq, cq), where tq is the chapter title and cq is the
associated descriptive text, BBookX retrieves a set of candidate relevant resources
D by querying tq and cq in the pre-built full text index. The key phrases of q,
denoted as kq, are also extracted for the following ranking process.

Ranking: For each candidate resource d in D, BBookX calculates the similarity
score between q and d, denoted as sim(q, d), by considering features similar to local
features described in Section 7.3.2, such as title similarity and text similarity. D is
sorted by similarity score in descending order as a ranked list.
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(b) Adding a chapter.

Figure 7.3. Interactive User interface. (cont.)

In our system, sim(q, d) is calculated as

sim(q, d) =α1 · cosSim(cq, cd) + α2 · cosSim(kq, kd) + α3 · Jaccard(tq, td)

where cosSim(cq, cd) is the cosine similarity between the word vectors of the content
of q and d, cosSim(kq, kd) is the cosine similarity between key phrase vectors of
q and d, and Jaccard(tq, td) is the Jaccard similarity between the title of q and d.
Specifically, α1 = 0.2, α2 = 0.2, and α3 = 0.6.

Relevance feedback: Users can decide whether to keep a returned item or
retrieve a new ranked list of items. BBookX incorporates a relevance feedback
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mechanism, which includes three steps: 1) Store the results kept by users as relevant
results; 2) Select the top 20 key phrases from these results using term frequency
weights; 3) Perform query expansion by adding these selected key phrases to the
description cq. A new query q′ is then used to retrieve relevant results. Since users
usually will not write a detailed chapter description, the relevance feedback will
help users to find relevant results. Of course, other methods can be used and are
currently being explored.

7.5 Field Test
BBookX was deployed with students in an introductory information sciences and
technology course. A lab assignment was created that required the use of BBookX,
asking the students to use the software to generate a 3-chapter book, covering
topics at the intersection of each students’ major and information sciences. An
exploratory survey was then administered (n=140), used to better understand the
usability of BBookX, On a four point scale (very positive, positive, negative, very
negative), 72% rated their overall experience with BBookX either positive (59%)
or very positive (13%), 89% rated the learnability of BBookX either positive (45%)
or very positive (44%), 65% rated their satisfaction with BBookX either positive
(55%) or very positive (10%), and 62% rated the efficiency of using BBookX either
positive (46%) or very positive (16%). During a post-lab discussion in class, it was
discovered that some of the students did not realize that the searches within each
chapter are designed to be iterative; the more you accept or reject results, the more
accurate the successive search. This requires forther exploration, as one hypothesis
on why some students found the efficiency and satisfaction of using BBookX to
be negative is that they only ran a single search within each chapter, thus not
experiencing the results getting more personalized based on user actions.

The most interesting question asked students if BBookX surfaced interesting
pages of content, including things the student did not know before completing this
homework. On a 4-point scale (strongly agree, agree, disagree, strongly disagree),
73% answered either agree (61%) or strongly agree (12%). This speaks positively
about the algorithms powering the software, as they are finding and surfacing pages
of content that provide new learning opportunities for students focused on their
specific majors. Of note is that this was a general education course, with a wide
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range of class standings, from freshman to 5-th year seniors.

7.6 Book Publishing
Once a user finalizes his or her book, BBookX features a book generation tool.
Currently, book generation involves extracting text-based content from the selected
Wikipedia entries, and combining them in a text file with some formatting. This
feature was conceptually well-received by user testers, though it quickly was apparent
that distributing a lengthy text file to students as their primary textbook was
undesirable. The second phase of development planned for BBookX involves a new
publishing UI that users will interact with after finalizing a book. The publishing
UI is intended to be a flexible UI that allows users to add, edit, and delete content
from the generated book. Once finished in the publishing phase, the book can be
shared with students in a variety of methods, such as a designed web interface, an
e-text, PDF, and possibly other formats.

The current implementation to quickly make the finalized books more accessible
is to use a ‘Share’ feature, which creates an iframe containing a link to the final
book, and users can embed this iframe on websites and in Learning Management
Systems (LMS)(see Figure 7.4). This creates a quick way to share created books,
though users do not have any ability to edit books. One user is leveraging a book
created in this way as the primary textbook to support a course of 150 students.

7.7 Related Work
To our knowledge, there is little work similar to ours. While there are systems for
helping create books, such as FlexBook6, Wikibooks, and METIS [101], BBookX is
novel because of its automatic textbook creation aspects. Other existing textbook
building systems do not support the automatic retrieval and organization of OER,
but require manually attached related resources. FlexBook is a textbook authoring
platform where users can produce and customize the book content by re-purposing
educational content. Wikibooks provides a wiki-based platform which allows
different users to collaboratively create books [15].

6CK-12 Foundation: http://www.ck12.org/
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Figure 7.4. Example of a completed book, when embedded on a website. The first
chapter is expanded, to view the links to each section.

The method used in the interactive query subsytem of BBookx is related
to relevance feedback [143]. Three types of feedback can be utilized: explicit
feedback, which is collected by users explicitly marking relevant and irrelevant
documents [163]; implicit feedback, which is inferred by the system based on users’
observable behaviors such as clicks and votes [3, 73]; and pseudo feedback, which
is gathered by assuming the top-k ranked documents are relevant [19]. Currently,
BBookX uses only explicit feedback.

Our methods for generating open books using Wikipedia is also similar to
wikification [111,114], which automatically identifies concept mentions in text and
links them to referents in Wikipedia. The difference is our focus is on extracting
the most important concepts for each book chapter, not named entities mentioned
in the general text.
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7.8 Summary and Discussion
This chapter introduced BBookX, a novel search-based system designed to facilitate
the online book creation with the help of OERs. BBookX was launched within
the Pennsylvania State University on May 26th, 2015, then opened for general
use beginning October of 2016 at https://bbookexp.psu.edu/. When examining
system log data in December of 2016, BBookX has 416 users, that created 419
books. Over 47,000 searches were exectuted within BBookX, resulting in 1,086
book chapters. Note that BBookX system is still a work in progress and being
actively updated. There are ongoing faculty user testing and interviews to further
evaluate different aspects of the system [133].

BBookX is an actual educational application where the methods proposed
in previous chapters could be applied. First, a key difference between BBookX
and traditional search engines is that the retrieved OERs by BBookX ideally
should not only be relevant but also should follow a correct learning order. The
proposed methods on concept prerequisite learning could be beneficial for BBookX
to organize different retrieved chapters in an appropriate learning order. Second,
since the goal of the proposed BBookX system is to facilitate the textbook authoring
process, the ability to automatically create questions will be of great interest to
its potential users. This provides a great opportunity to deploy automatic MCQ
creation methods. The proposed QG methods could also be applied.
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Chapter 8 |
Conclusion and Future Work

8.1 Conclusion
This dissertation focused on machine learning methods for two educational applica-
tions: concept prerequisite learning and automatic distractor generation. The first
part of the dissertation focused on data-driven methods for concept prerequisite
learning, which was discussed in chapters 2 through 5:

The dissertation started by introducing a simple but effective link-based feature
– RefD – for measuring concept prerequisite relations. RefD is designed to measure
how differently two concepts refer to each other and uses the difference as a proxy
for concept prerequisite relations. RefD has been shown effective and outperforms
an existing supervised learning baseline for the task. After that the dissertation
proposed to learn concept prerequisites from university course dependencies. An
optimization based framework was proposed to solve the CPR-Recover problem.
Experiment results on a synthetic dataset and an actual course dataset both showed
that the proposed method outperformed existing baselines.

Later the dissertation investigated supervised learning for concept prerequisite
learning and focused on active learning to handle the lack of concept prerequisite
labels. As the first study to apply active learning to concept prerequisite learning,
this study proposes a novel set of features tailored for prerequisite classification
and compares the effectiveness of four widely used query strategies. Experimental
results for domains including data mining, geometry, physics, and precalculus show
that active learning could reduce the amount of training data required for concept
prerequisite learning.
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To explore the mathematical nature of a prerequisite relation being a strict
partial order, the dissertation proposed an active learning framework tailored for
strict partial orders. The proposed approach incorporates relational reasoning not
only in finding new unlabeled pairs whose labels can be deduced from an existing
label set, but also in devising new query strategies that consider the relational
structure of labels. Experiments on concept prerequisite relations showed the
proposed framework can substantially improve the classification performance with
the same query budget compared to other baseline approaches.

The second part of this dissertation studied automatic distractor generation
for creating multiple choice questions, as discussed in Chapter 6. In contrast with
previous unsupervised similarity-based DG methods, we proposed two data-driven,
learning-based approaches for DG:

First, we proposed a generative model learned from training GANs to create
useful distractors for automatically creating fill-in-the-blank questions. A generator
G is trained to capture the conditional answer distribution given the question
sentence. And the discriminator D is trained to estimate the conditional probability
that an answer came from the training data rather than G given the question
sentence. Experimental results showed that this context-based method achieved
comparable performance to a frequently used word2vec-based method for the Wiki
dataset. In addition, we proposed a second-stage learner to combine the strengths
of the two methods, which further improved the performance on both datasets.
Second, we studied how ranking models can select useful distractors for creating
MCQs. We proposed models which can learn to select distractors that resemble
those distractors in actual exam questions. We empirically studied feature-based
and NN-based ranking models with experiments on the recently released SciQ
dataset and our MCQL dataset. Experimental results demonstrate that feature-
based ensemble learning methods (random forest and LambdaMART) outperform
both the NN-based method as well as unsupervised baselines.

In the final chapter of this dissertation we introduced BBookX, a computer-
facilitated book creation tool. Using information retrieval techniques, BBookX is
designed to facilitate the online book creation process by searching OERs. It was
initially launched within the Pennsylvania State University and then opened for
general use in October of 2016. BBookX is an actual educational application where
the methods for concept prerequisite learning and automatic distractor generation
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proposed in previous chapters could be applied.

8.2 Future Work
Built on the work described in this dissertation, future work can take multiple
directions.

First, our work on active learning of strict partial orders assumes that the oracle
never makes mistakes. It would be interesting to study active learning of strict
partial orders from a noisy oracle. The reasoning module for closure calculation
proposed in Section 5.2 would be problematic when the labels are inconsistent with
the properties of strict partial orders. In addition, it would be very helpful to
develop a knowledge base for educational purposes which focuses on the knowledge
concepts. Existing knowledge bases such as YAGO1 and Freebase2 are largely
based on named entities including people, organizations, groups, etc. However,
knowledge concepts such as “Machine learning”, “Deep learning”, and “Support
vector machine” should interest educational applications. Having such a knowledge
base would potentially enable deep learning-based relation extraction methods for
concept prerequisite relations and other relations of interest.

Besides distractor generation, another important task for automatic MCQ
creation is question stem generation: creating question sentences from an input
paragraph. Traditional methods for question stem generation relies heavily on the
rule-based syntactic transformation of a declarative sentence. Only recently have
a few studies [42,173] worked outside such manually generated rules. Developing
data-driven question stem generation methods, thus, would be a promising direction
to take.

It is also worth investigating the deployment of the methods proposed in this
dissertation to actual educational applications. BBookX is at an early stage and
is still a work in progress. It would be interesting and nontrivial to incorporate
automatic prerequisite discovery and question generation methods into the BBookX
system. The system can also serve as an evaluation platform for these methods.
In addition, the feedback collected from users’ clicks could be used as signals for

1https://www.mpi-inf.mpg.de/departments/databases-and-information-
systems/research/yago-naga/yago

2https://developers.google.com/freebase/
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training supervised models.
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Appendix |
Supplemental Material for Chap-
ter 5

1 Missing Proofs

1.1 Proof of Proposition 1

Proof. For any two supersets H1 6= H2 of H whose oracles WH1 ,WH2 are complete,
WH1∩H2 , on a smaller set H1 ∩H2, is also complete (by definition).

1.2 Proof of Proposition 2

Proof. For any (a, b), (b, c) ∈ H ∩G, because WH is complete, (a, c) ∈ H ∩G (by
Definition 9 (i)). For any (a, b) ∈ H∩G, (b, c) ∈ H∩Gc ⊆ (H∩G)c (by Definition 9
(iv)). Therefore, H ∩G is also a strict order of V (by Definition 6).

1.3 Proof of Theorem 1

1.3.1 Well-definiteness

It is trivial that if WH is complete, G∩ (H ∪N(x,y)) is also a strict order. Therefore,
N ′′(c,d) is well defined, so is O(x,y).

1.3.2 Necessity

One can easily verify that if (x, y) ∈ G ∩Hc, both N(x,y) ⊆ H ′ (Definition 8 (i)),
R(x,y) ⊆ H ′ (Definition 8 (iv)), and S(x,y)∪T(x,y)∪O(x,y) ⊆ H ′ (Definition 8 (ii),(iii))
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from the definition of closure, and likewise if (x, y) 6∈ G, N ′(x,y) ⊆ H ′ (Definition 8
(ii), (iii)). In another word, C(x,y)(H) ⊆ H ′. Also, see Fig. 5.1 for the explanation
of each necessary condition mentioned.

1.3.3 Sufficiency

One can see AGa′ ⊆ AGa if a′ ∈ AGa and DG
a′ ⊆ DG

a if a′ ∈ DG
a . That is, an ancestor

of ancestor is also an ancestor (briefly, AAA), and a descendant of descendant is
also a descendant (briefly, DDD).

Now we proceed to prove C(x,y) is complete using contradiction which finalizes
the proof of our result C(x,y) = H ′. If C(x,y) is not complete, by definition, one of
the four conditions in Definition 8 must fail.

If Definition 8 (i) fails, there must exist a, b, c such that (a, b) ∈ C(x,y) ∩ G,
(b, c) ∈ C(x,y) ∩ G, while (a, c) 6∈ C(x,y). In this case, if both (a, b) and (b, c) are
from H, because H is complete, (a, c) ∈ H ∩G contradicts the assumption. Hence
at least one of (a, b) and (b, c) is not included in H. By the definition of C(x,y),
if one pair belongs to G ∩ Hc, it must come from N(x,y). Therefore, it implies
(x, y) ∈ G ∩Hc.
Cases 1: If (a, b) ∈ N(x,y) and (b, c) ∈ N(x,y), (y, b) ∈ G and (b, x) ∈ G. That how-
ever implies (y, x) ∈ G, contradicting G’s definition as a strict order (See Definition 6
(ii)).
Cases 2: If (a, b) ∈ N(x,y) and (b, c) ∈ H, a ∈ AG∩Hx and c ∈ DG∩H

y (by DDD). It
implies (a, c) ∈ N(x,y) ⊆ C(x,y).
Cases 3: If (a, b) ∈ H and (b, c) ∈ N(x,y), a ∈ AG∩Hx (by AAA) and c ∈ DG∩H

y . It
implies (a, c) ∈ N(x,y) ⊆ C(x,y).

In summary, Definition 8 (i) holds for C(x,y).
If Definition 8 (ii) fails, there must exist a, b, c such that (a, b) ∈ C(x,y) ∩G =

G ∩ (H ∪ N(x,y)), (a, c) ∈ C(x,y) ∩ Gc, while (b, c) 6∈ C(x,y). In this case, if both
(a, b) and (a, c) are from H, because H is complete, (b, c) ∈ H ∩Gc contradicts the
assumption. Hence at least one of (a, b) and (a, c) is not included in H. We divide
the statement into the following cases to discuss:
Cases 1: If (x, y) ∈ G, (a, b) ∈ N(x,y), and (a, c) ∈ H ∩Gc, (a, x) ∈ G ∩H and
(y, b) ∈ G ∩H. Because (a, x) ∈ H ∩G, and (a, c) ∈ H ∩ Gc, (x, c) ∈ H ∩ Gc.
Because {(x, y), (y, b)} ⊆ G ∩ (H ∪ N(x,y)), (x, b) ∈ G ∩ (H ∪ N(x,y)). Therefore,
(b, c) ∈ N ′′(x,c) ⊆ C(x,y).
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Cases 2: If (x, y) ∈ G and (a, c) ∈ R(x,y), (c, a) ∈ N(x,y), thus (c, b) ∈ N(x,y). It
implies (b, c) ∈ R(x,y) ⊆ C(x,y).
Cases 3: If (x, y) ∈ G and (a, c) ∈ S(x,y), (y, a) ∈ G∩H and ∃(d, c) ∈ Gc ∩H such
that (d, x) ∈ G ∩ H. Thus, (x, c) ∈ Gc ∩ H ⇒ (y, c) ∈ S(x,y) ⇒ (b, c) ∈ N ′′(y,c) ⊆
C(x,y).
Cases 4: If (x, y) ∈ G and (a, c) ∈ T(x,y), (c, x) ∈ G∩H and ∃(a, d) ∈ Gc ∩H such
that (y, d) ∈ G ∩ H. Thus, (a, y) ∈ Gc ∩ H ⇒ (a, x) ∈ T(x,y) ⇒ (a, b) 6∈ N(x,y).
Because (a, b) ∈ G∩ (H∪N(x,y)), one has (a, b) ∈ G∩H ⇒ (b, x) ∈ T(x,y) ⇒ (b, c) ∈
N ′′(b,x) ⊆ C(x,y).
Cases 5: If (x, y) ∈ G and (a, c) ∈ O(x,y), there exists (d, e) ∈ S(a,b) ∪ T(a,b) such
that (a, c) ∈ N ′′(d,e). Therefore, {(a, b), (d, a), (c, e)} ⊆ G ∩ (H ∪ N(x,y)). Hence,
(b, c) ∈ N ′′(d,e) ⊆ C(x,y).
Cases 6: If (x, y) ∈ Gc, we have (a, b) ∈ G ∩H and (a, c) ∈ N ′(x,y). Thus (x, b) ∈
G ∩H ⇒ (b, c) ∈ N ′(x,y) ⊆ C(x,y).

In summary, all six cases above contradict the assumption (b, c) 6∈ C(x,y). Thus
Definition 8 (ii) holds for C(x,y). Given we have verified the condition of Definition
3 (ii), one can also prove that Definition 3 (iii) holds in a similar way, because their
statements as well as definitions of S(x,y) and T(x,y) are symmetric.

One can easily see that Definition 3 (iv) holds for C(x,y), because G∩ (H∪N(x,y))
is also a strict order and R(x,y) ⊆ C(x,y). �

1.4 Proof of Proposition 3

Proof. If (c, d) ∈ S(a,b), c ∈ DG∩H
b ∪{b}. then c 6∈ AG∩Ha ∪{a}, thus DG∩(H∪N(a,b))

c =
DG∩H
c (by Definition of N(a,b)). It holds that DG∩(H∪N(a,b))

c ∪ {c} ⊆ DG∩H
b ∪ {b}.

Therefore, one has N ′′(c,d) ⊆ N ′′(b,d) ⊆ O(a,b) if (c, d) ∈ S(a,b). Likewise, N ′′(c,d) ⊆
N ′′(c,a) ⊆ O(a,b) if (c, d) ∈ T(a,b). One has

O(a,b) =
 ⋃

(c,d)∈S(a,b)

N ′′(b,d)

 ∪
 ⋃

(c,d)∈T(a,b)

N ′′(c,a)

 ,
whose time complexity is O(|H|3).
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1.5 Proof of Proposition 4

Proof. Let (c′, d′) ∈ N ′′(c,d). If d′ 6= d, (d′, d) ∈ G∩(H∪N(a,b)). Then, A
G∩(H∪N(a,b))
d′ ⊆

A
G∩(H∪N(a,b))
d (AAA). Thus,

A
G∩(H∪N(a,b))
d′ ∪ {d′} ⊆ A

G∩(H∪N(a,b))
d ∪ {d}.

Likewise,
D
G∩(H∪N(a,b))
c′ ∪ {c′} ∈ DG∩(H∪N(a,b))

c ∪ {c}.

By the definition of N ′′(c′,d′) and N ′′(c,d), one has N ′′(c′,d′) ⊆ N ′′(c,d).

1.6 Proof of Theorem 2

We first introduce the notion of transitive reduction before we proceed:

Definition 12 (Transitive Reduction [6]). Let G be a directed acyclic graph. We
say G is a transitive reduction of G if:

(i) There is a directed path from vertex u to vertex v in G iff there is a directed
path from u to v in G, and

(ii) There is no graph with fewer arcs than G satisfying (i).

For directed acyclic graph G, Aho et al. [6] have shown that the transitive
reduction is unique and is a subgraph of G. Let G be a simple directed acyclic
graph (DAG). In compliance with Def. 9, we use G to denote the transitive closure
of G. Define S(G) as the set of graphs such that every graph in S(G) has the same
transitive closure as G, i.e.,

S(G) := {G′ | G′ = G}

Aho et al. [6] have shown that S(G) is closed under intersection and union.
Further more, for DAG G, the following relationship holds:

G =
⋂

G′∈S(G)
G′ ⊆ G ⊆

⋃
G′∈S(G)

G′ = G

Next, we give the proof of Theorem 2 below.
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Proof. With the fact that negative labels from the query oracle cannot help to
induce positive labels in the graph, we can bound the number of queries, m, needed
to learn a classifier:

m ≥ |G|

The proof is by simple contradiction based on the definition of the transitive
reduction of G and the fact that A is a consistent learner. On the other hand, there
is a learning algorithm A that simply remembers all the queries with positive labels
and predict all the other inputs as negative. For this algorithm A, it suffices for A
to make |G| queries.

2 Experiment Environment
All experiments are conducted on an Ubuntu 14.04 server with 256GB RAM and
32 Intel Xeon E5-2630 v3 @ 2.40GHz processors. Active learning query strategies
are implemented in Python2.7. Code and data will be publicly available.
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